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Elucidating origin, composition, size, and lifetime of microdomains in biological membranes remains a major
issue for the understanding of cell biology. For lipid domains, the lack of a direct access to the behaviour of
samples at the mesoscopic scale has constituted for long a major obstacle to their characterization, even in
simple model systems made of immiscible binary mixtures. By its capacity to image soft surfaces with a
resolution that extends from the molecular to the microscopic level, in air as well as under liquid, atomic
force microscopy (AFM) has filled this gap and has become an inescapable tool in the study of the surface
topography of model membrane domains, the first essential step for the understanding of biomembranes
organization. In this review we mainly focus on the type of information on lipid microdomains in model
systems that only AFM can provide. We will also examine how AFM can contribute to understand data
acquired by a variety of other techniques and present recent developments which might open new avenues
in model and biomembrane AFM applications.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Elucidation of biomembranes molecular structure remains a major
challenge for cell biology. As for simpler biological objects, like soluble
brane Complexes, Centre de
lles, 34090 Montpellier Cedex,

ll rights reserved.
proteins, understanding of structure–function relationships in cell
membranes represents an essential step in the development of drugs
directed not only against pathologies resulting from membrane
dysfunction but also against all the intracellular processes which
require drugs internalization. In plasma membrane, the slow
transmembrane movement of most polar lipids, in particular in
absence of energy source (flip-flop), has early allowed to establish, via
chemical labelling or enzymatic treatment, their distribution between
the cytoplasmic (inner) and external (exoplasmic, outer) membrane
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Fig. 1. Phase behaviour of phospholipids. Upon hydration, a majority of phospholipids
form lipid bilayers that can exist in two distinct physical states, gel (Lβ and Lβ’) and fluid
(Lα, Ld), according to the temperature. In the gel phases, molecules are tightly packed in
a quasi-hexagonal array. The acyl chains are extended and parallel to each other. Intra-
and intermolecular motions are slow as compared to the fluid, liquid disordered phase
where the acyl chains are highly mobile and the molecules undergo fast rotational and
lateral (D) diffusion. For pure phospholipid species, the gel to fluid transition is
characterized by a melting temperature, Tm, recorded as a sharp peak by differential
scanning calorimetry. It is accompanied by a thinning of the bilayer. Addition of
cholesterol induces a concentration dependent decrease in the sharp peak until it is
suppressed and the formation of a new phase, the liquid ordered phase (Lo). In the Lo
phase, the acyl chains are ordered and mostly extended but the molecules have a high
rotational and lateral mobility (adapted from Ref. [42]).
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leaflets [1]. In contrast, the fast flip-flop of cholesterol (Chol), in the
second time scale [2], has so far led to contradictory results about its
transmembrane distribution, a situation expected for other neutral
lipids. For the same kinetic reasons, the in plane dynamics of
membrane constituents is responsible for our limited knowledge of
the membrane lateral molecular organization. Even in a gel phase, the
slowest rate for a freely diffusing single phospholipid is still N100 nm2

s−1 (Fig. 1) [3,4]. For the last three decades, existence of membrane
microdomains resulting from either lipid–lipid, lipid–protein or
protein–protein interactions [5–11] was the object of animated
debates. Thermotropic transitions starting around room temperature
and ending between ∼39 and 42 °C were early characterized either in
purified apical brush border membranes (BBM) from renal and
intestinal epithelial cells [12–14], or in situ [15], by differential
scanning calorimetry (DSC), fluorescence polarization and electron
spin resonance (ESR). These data strongly suggested that a sphingo-
lipid-dependent [16] lipid phase separation could account for the
Table 1
Lipid composition of DRMs and apical membranes of intestinal and renal epithelial cells (b

Composition (mol%) DRMs In

Total1 Out.Leaf. (calculated)3 T

Sphingolipids (SL) GSL 22 ∼40 3
SM 14 ∼30

Glycerophospholipids (GPL) 33 – 3
Cholesterol (Chol) 32 ∼30 3
SL/GPL ratio 1.09 1.
Chol/(SL+GPL) ratio 0.47 ∼0.43 0
Chol/GPL ratio 1.03 0

Total lipid composition of DRMs, intestinal and renal brush border membranes taken from lit
the exoplasmic leaflet (Out.Leaf.) either calculated from the known sphingolipid asymmetr
From :1[17]; 2[254]; 3Estimation assuming that GSL and SM are localized on the external le
existence of a category of membrane domains. The biochemical and
biophysical characterization of detergent resistant plasma membrane
fractions (DRMs) isolated from MDCK cells [17,18] and the concept of
rafts, a category of microdomains enriched in sphingolipids (SL) and
cholesterol (Chol) [8], as functional membrane platforms controlling a
large variety of cell functions [19], have generated a huge amount of
work on membrane heterogeneity in a great number of cell types.
Determination of the lipid composition of the first DRMs led to a SL/
Chol/glycerophospholipids (GPL) molar ratio close to 1/1/1 (Table 1)
[17]. With this Chol concentration, DRMs membrane lipids are
expected to be in a liquid ordered phase (Lo) (Fig. 1). The Lo phase is
formed by the interaction of phospholipids with Chol [20–22]. It is
characterized by a high degree of acyl chains order associated with
lateral diffusion properties close to those determined for lipids in the
liquid-crystalline or fluid phase (Lα or Ld for lipid-disordered) where
the acyl chains are kinked and loosely packed. For lipids in the gel
phase (Lβ' or s for solid), acyl chains are evenmore ordered than in the
Lo phase but lateral diffusion (D) is much slower (Fig. 1). The
formation of Chol-enriched domains would be driven by a Lo-Lα phase
separation process in which Lo SL/Chol-enriched lipid domains are
surrounded by a fluid Lα matrix enriched in more unsaturated GPL
species. Despite all this information on various membrane domains,
many questions about microdomains like the existence of families of
domains sharing the enrichment in SL and Chol but with large
individual variations in acyl chains and polar headgroup composition,
the coupling between the exoplasmic and cytoplasmic leaflets, their
kinetics of formation, lifetime, and their size range(s), remain open.
Thus, domains in the micrometer range were reported using
fluorescence photobleaching recovery (FRAP), fluorescence digital
imaging microscopy and single molecule fluorescence microscopy
[23–25], while sizes ∼20 nm [26,27] or b5 nm [28] for domains
associated with glycosylphosphatidylinositol (GPI) anchored proteins
were estimated using the photonic force microscopy (PFM), stimu-
lated emission depletion (STED) far field fluorescence microscopy and
fluorescence resonance energy transfer (FRET) methods, respectively.
Difficulty in characterizing lipid-dependent domains of cell mem-
branes is not surprising considering that the phase behaviour of lipid
mixtures is still poorly understood [29]. Elucidating the properties of
these mixtures with, or without, inserted peptides or proteins, is
therefore of primary importance, even considering that in model
membranes lipid domains are at, or close to, equilibrium which
contrasts with the transient non equilibrium structures found in
biomembranes [30]. The obvious first step is the study of Langmuir/
Langmuir Blodgett (LB) monolayers properties [31] since a biomem-
brane can be considered as two “weakly” coupled monolayers (see
however [32]) and because in plasma membranes SL, a key
constituent of SL/Chol-enriched microdomains, is practically exclu-
sively found in the exoplasmic leaflet. The next step is the
characterization of lipid mixtures in bilayers which, since Gorter and
Grendel [33], has followed the development of new tools as well as of
rush border membranes, BBM).

test. BBM Renal. BBM

otal2 Out.Leaf. (calculated)3 Total4 Out.Leaf. (determined)5

7 ∼70 b2 6 3
23 47

2 – 36 12
1 ∼30 38 38
16 0.72 4.17
.45 ∼0.43 0.59 0.59
.98 0.62

erature. For each membrane, the second column gives the corresponding composition of
y or determined experimentally.
aflet [1]; 4[255]; 5[256,257]; 6[258].
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newmodels, from supported bilayers to small (SUV), large (LUV) and,
more recently, micrometer size giant (GUV) unilamellar vesicles [34].
Among these new tools, atomic force microscopy (AFM) [35] has
become very popular in surface science by giving access, in air or in
liquid, to topography at a molecular scale. This holds true for soft
surfaces where the AFM high resolution of ∼1 nm in lateral and
∼0.1 nm in the vertical direction was initially applied in P.Hansma
laboratory to image phospholipids in LB and supported lipid bilayer
(SLB) model membranes [36,37]. Lipid domains in various binary and
ternary mixtures under phase separation, containing or not inserted
peptides/proteins, were thus later imaged in LBs and SLBs [38–42].
Recent reviews have exposed numerous AFM data obtained these last
years both on the formation of solid-supported bilayers and on the
imaging of domains in various lipid mixtures [43–47].

In this review we will essentially focus on the type of information
on model systems that only AFM can provide. We will then examine
how AFM can contribute to our understanding of data obtained on
similar samples by lower resolution techniques. Some of the
intriguing properties of SLBs microdomains revealed by AFM and
the new questions on membrane-substrate relationships they raise
will be discussed in a next section. Finally, we will present AFM recent
developments which might open new avenues in model and
biological membrane applications of AFM imaging.

2. AFM characterization of lipid films andmembrane hemi-leaflets

2.1. Single lipid and binary mixtures of lipids

Langmuir and LB films have been extensively used to study the
properties ofmonolayers asmodels formembrane biophysics [48–50].
Following fluorescence microscopy and FRAP methods [49,51–53],
Fig. 2. AFM Imaging of POPC, DPPC and SM LB films. Langmuir film transfers were performe
virtual section of (C). The (E) cartoon illustrates the sample positioning under the tip whe
500 nm.
total internal reflection fluorescence (TIRF) [54], Brewster-angle
microscopy (BAM), x-ray and neutron scattering techniques, Fourier
transform infrared (FTIR) spectroscopy, and polarization-modulated
infrared reflection absorption spectroscopy (PM-IRRAS) [55,56] were
applied to monolayers studies. Together, these techniques have
provided invaluable data of liquid expanded (LE) and liquid
condensed (LC) phases in monolayers and their dynamic properties
down to the microscopic scale (for a detailed description of structure
and phase transitions in Langmuir monolayers see [50]). In many
experiments, planar supported lipid monolayers prepared from
vertical Langmuir–Blodgett (LB) or horizontal Langmuir–Schäfer
(LS) transfers from the air-water interface to a hydrophobic silanized
glass slide [48,57] have been examined under aqueous buffer. The
transfer was performed at a chosen surface pressure which, when
modelling biological membranes, was generally comprised between
30 and 40 mN/m [58,59]. Because the dynamic properties of samples
are essentially maintained under these transfer conditions, FRAP, total
internal reflection fluorescence microscopy (TIRF) [60,61] and
fluorescence correlation spectroscopy (FCS) [62] have been applied
to study lipid–lipid, lipid–protein interactions and properties of model
rafts [63,64].

In contrast with the experiments mentioned above, upward
transfer of lipid films onto hydrophilic substrates like mica, quartz
and glass resulting in the exposure of acyl hydrophobic chains to air
has been so far practically exclusively used for AFM analysis (Fig. 2). It
is worth noting that the use of fluorescently labelled phospholipid
films presenting large phase separated domains showed that the
microscopic monolayer topology was preserved for transfer pressures
greater than 10 mN/m [49,65]. Thus, although details of molecular
arrangement might be affected, the difference in packing density
before and after transfer is generally negligible for molecules closely
d at 32 mN/m for POPC in LE (A), DPPC in LC (B) and SM (C) in LE+LC phases. (D) is a
n imaging with an AFM in air. Blue headgroups correspond to LC, red to LE lipids. Bar:
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packed before the transfer from water interface is accomplished
[66,67]. For lower surface pressures, transfer of monolayers from the
LE phase or in the LE/LC coexistence region often results in the
formation of a substrate (and pH)-dependent close-packed domains
in the corresponding LB films [66,68–70] (however see [71,72]). AFM,
and more generally scanning probes techniques, have given access to
the missing essential information on monolayers organization at the
mesoscopic and eventually molecular scales [36,73,74]. For these
highest resolutions imaging, care has to be taken to use scanning
forces as low as possible to prevent orientational ordering of
structures by the AFM tip [75]. Sub-micrometer organization of
phase-separated fatty acids in the LC-LE coexistence region and
corresponding determination of local mechanical and tribological
properties early illustrated the usefulness of AFM in the characteriza-
tion of heterogeneous soft surfaces [76,77]. As illustrated by Fig. 2A,
AFM images of films made of a single phospholipid species in the LE
phase, transferred at 32 mN/m, show a homogeneous surface of low
roughness (b0.4 for 1-palmitoyl-2oleoyl-sn-glycero-3-phosphocho-
line, POPC). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)
films transferred in the LC phase at the same surface pressure also
exhibit a low roughness (∼0.6 ) but with the presence of line defects
(0.1–0.5 depth, 15–20 nm in width) at their surface (Fig. 2B, arrows),
which might correspond to a border between different domains, that
only the incredible resolution of the AFM can reveal. Transferring
DPPC films labelled by a fluorescent phospholipid probe, at a surface
pressure where LC-LE coexist, demonstrated the existence of both
large and mesoscopic LC domains and indicated that the presence of
the dye reduced significantly the total amount of the LC phase [78].
Analysis of natural sphingomyelin (SM) films, the major SL found in
eukaryotic cells, under identical transfer pressure conditions (Fig. 2C),
clearly demonstrates the existence of a marked heterogeneity of the
Fig. 3. Example of LE-LC phase separated binary mixture in LB film. DOPC/DPPC (1:1) films
contact mode. A: low magnification height image: bar 5 μm, z scale 20 nm; B and C: samp
magnification of A: bar 400 nm, z scale 7 nm. E and F, corresponding lateral force (friction)
surface, with darker zones generally less than 200 nm in size and
∼1 nm lower than the lighter surface. The presence of such domains in
the filmwhich, according to DSC thermograms of SM [79], correspond
to LE regions surrounded by LC zones, would not be detected by
optical techniques including fluorescence microscopy and their
topographical details would escape all other analysing techniques.
For SM, the height difference between domains can be explained by
the fact that the shortest or unsaturated disordered acyl chains are in
the LE phase. In the most common used contact mode for AFM
imaging, the tip remains continuously in contact with the sample
during the raster scan of the surface [80,81]. Consequently, the relative
height of surface structures can also be affected by the scanning force
applied during scanning, which has to be minimized, and the local
mechanical properties of the sample [82]. It is worth noting that when
imaging in air under ambient conditions strong adhesion forces
between the tip and the film, linked to water condensation at the air/
sample interface, impose the use of scanning forces significantly
higher than those required for imaging under liquid. Before imaging,
samples are often kept in a dry cabinet or maintained in the laboratory
atmosphere where relative humidity (RH) is generally less than 50%, a
value sufficient to block the lateral diffusion of lipids in films
transferred onto polymer cushions. For films transferred onto glass,
the lateral diffusion is at the lower resolution limit of FRAP technique
even at 90% RH [83]. Accordingly, in contrast with films exposing their
polar head group to water, AFM in air gives topographical information
on films where lateral diffusion is blocked. Immersion of the
monolayer in water increases the diffusion coefficient by two orders
of magnitude and the film remains stable even though the
hydrophobic tails of the lipid molecule are exposed directly to water
[83,84], allowing AFM imaging [85]. Frictions forces between the tip
and the sample [86], as well as energy dissipation which reports on
were transferred at 32 mN/m onto mica and examined in air with an AFM working in
les from two other preparations, bar: 2 μm, z scale 15 nm; D: height image at a higher
images in the forward and backward direction of the tip scanning, z: 0.2 V.



Fig. 4. Topography of DPPC/DOPC LB films containing 4% GM1. The filmwas transferred
at 32 mN/m onto mica and examined in air in an AFM working in contact mode. bar:
250 nm, z scale: 5 nm; For more details see [88].
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local viscoelastic properties when using AFM oscillating modes, can
also probe the existence of phase separation inmonolayers in an original
way [82,87]. So far, however, the friction and viscoelastic signals are
affected by the topography signal and, for lipid films, give only qualitative
information. Moreover, improvement of the imaging quality by reducing
the scan force is associatedwithminimizing friction in contact and phase
shift in oscillating modes. AFM characterization of LC-LE coexistence
regions in LBfilmsmade of single phospholipids species has been applied
to various binary and ternary lipid mixtures and has established the
usefulness of this technique for the detection of membrane domains
ranging from the nanometer to the micrometer scale. Fig. 3 illustrates an
example of contactmodeAFM imaging of a LBfilmmade 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC, LE)/DPPC(LC)nowcommonlyused in
studies on phase-separated binary mixtures, because their respective
transition temperature of −20 and 41 °C insures a large zone of order-
disorder phase coexistence [88–92]. A large scan, at the AFM scale, shows
the presence of two categories of light domains protruding by ∼0.6 nm
fromadarkermatrix (Fig. 3A). The largerones,∼1 to2.2 μmin lateral size,
could have beendetected byopticalmicroscopy. This is not the case of the
abundant smaller domains ∼100–400 nm in size. The taller larger
domains exhibit irregular, often linear and angular boundaries (white
arrows), indicating they correspond to LC phase domains. Imaging of two
other samples confirms the general characteristics of the mixture,
showing the coexistence of large and small domains, but also indicates
that their form and relative size can vary (Fig. 3B and C). Decreasing the
scan size demonstrates that angular boundaries are also found in smaller
domains (Fig. 3D, white arrows). Local variations in friction force images
(black arrows) obtained on LC domains in the forward (Fig. 3E) and the
backward scanning direction (Fig. 3F), not associated with significant
height modification, further suggest the existence of heterogeneity in
their physical state as a function of the distance from the boundary.
LB films made of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE)/1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE)
[87], DOPE/1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)
[82], 1-palmitoyl-2oleoyl-sn-glycero-3- phosphoethanolamine (POPE)/
1-palmitoyl-2oleoyl-sn-glycero-3-phospho-L-serine (POPS) and POPE/
POPS/SM [93], DPPC/1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-gly-
cerol) (DPPG) [94], DPPC/ POPC/cardiolipin (CL), POPE/CL [95] and
POPC/POPE [96] are among the various binary mixtures examined by
AFM. In many occasions, the detailed surface structure could not be
predicted from the other approaches. For example, this is the case of the
phase topography of ceramides, Chol and free fatty acids mixtures that
mimic the lipid composition of stratum corneum [97,98].

2.2. Lipid mixtures related to microdomains enriched in sphingolipids
and cholesterol

AFM has allowed to establish the distribution of ganglioside GM1,
a glycosphingolipid (GSL) which is the natural receptor for cholera
toxin, between ordered/disordered two-phase monolayers [88,99].
GSL acts as a receptor for numerous biologically active agents and its
distribution in phase-separated lipid mixtures had been previously
extensively investigated by various indirect methods leading to
contrasting conclusions (see references in [88]). AFM examination of
LE/LC DOPC/DPPC monolayers doped by physiological, low concen-
trations (b5%) of GM1, shows that it forms round shaped (15–30 nm)
and filamentous nanodomains, preferentially localized in the DPPC-
enriched LC phase (Fig. 4), which eventually fuse to form fence-like
structures at the interface (black arrows). This indicates the existence
of a DPPC/GM1 LC/LC immiscibility, most likely driven by hydro-
phobic mismatch and strongly suggests that GM1 may also form
nanodomains within larger ordered microdomains. In addition, a few
GM1 nanodomains also localize in small LC microdomains (white
arrows). Although in some cases GM1 nanodomains seem to be
located in the LE phase, it cannot be excluded they are standing on LC
nanodomains (white arrows). This complex distribution at the
nanoscale probably explains at least partly the difficulties encoun-
tered before in defining GM1 distribution. These studies, in
agreement with preferential localization of GM1 in the ordered
“rafts” domains in plasma membranes, have been extended to higher
GM1 concentrations [100] and to other gangliosides [101]. Alone,
AFM cannot answer the questions concerning the monomeric/
aggregates state of GM1 in domains. The possibility to analyse
phospholipid monolayers labelled with fluorescent probes by near-
field scanning optical microscopy (NSOM) was early recognized
[102]. Association of AFM with confocal and NSOM was applied to
DPPC LB films and SLB [70]. Combination of AFM and NSOM in one
single equipment has further allowed to demonstrate, using Bodipy-
labelled GM1, that the addition of ganglioside produced significant
changes in the phase-separation behaviour of the binary DPPC/DOPC
and the ternary DPPC/DOPC/Chol monolayers [103]. Moreover, with
the Bodipy fluorophore, monomeric and aggregated gangliosides
could be distinguished, which provided new insight into the
complexity of GM1 partitioning. This work also demonstrated that,
independently of a lipid oxidation process which affects the size of
domains [104,105], the fluorescent label affected the partition of GM1
between LC and LE phases.

Lipid composition of detergent resistant membrane fractions
(DRMs), whose relationships with native “rafts” remain a matter of
debates [106–109], is close to that of the apical membrane of intestinal
and renal epithelial cells (Table 1). The asymmetry of SL distribution
in plasma membranes indicates that exoplasmic leaflet of intestinal
and renal cells BBM is essentially made by mixtures of GSL/Chol
and SM/GPL/Chol, with a predominant fraction of SM, respectively
(Table 1). A SL/GPL/Chol ratio close to unity, often chosen to model
cells exoplasmic leaflet, rather corresponds to the composition of the
outer leaflet of non polarized human erythrocytes and platelets [32].
Accordingly, LB films made of SM/GPL ratio modelling the exoplasmic
leaflet of kidney BBM were examined by AFM. Because the saturated/
unsaturated fatty acid ratio of phosphatidylcholine (PC) in these
membranes is close to 1 [16], POPC was chosen rather than DOPC only
present as a minor PC species in biomembranes [110]. For these BBM
models AFM could establish the presence of concentration-dependent
LC SM-enriched nanodomains [111] whichwould have escaped optical
detection. Neither the size nor the spatial distribution of these
domains could have been obtained by other approaches. The same
series of experiments strongly suggested that LC/LE lipid phase
separation may occur in the renal BBM exoplasmic leaflet in the
absence or upon depletion of Chol. Furthermore, Chol-induced
connection of nanodomains resulting in the formation of a lipid-
ordered network was also demonstrated (Fig. 5).



Fig. 5. Branching of SM enriched nanodomains by cholesterol addition. A: height image
of SM/POPC (3:1) LB film. B: SM/POPC (3:1)+20 mol% Chol. Bar: 500 nm, z colour
scale: 10 nm.
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2.3. Lipid interaction with peptides and proteins can create domains in
monolayers

Numerous studies on the interactions of amphipathic peptides and
water-soluble proteins with membranes start with monolayers to
investigate the lipid-water interface step. To surface pressure and
electric potential measurements, they associate various techniques
like fluorescence and Brewster angle microscopy, vibrational spectro-
scopy, x-ray and neutron scattering techniques and PM-IRRAS. Here
again, AFM brings unique invaluable information. For example,
investigation of the interaction with monolayers of some amphipatic
peptides that act as very efficient drug carriers has shown concentra-
tion and lipid headgroup-dependent α to β conformational transi-
tions. AFM analysis of samples further revealed that these transitions
were associated with formation of nanofilaments and nanodomains
supramolecular arrangements, providing a new interpretation of
data [112] [113]. Similarly, the human calcitonin fragment 9–32,
another efficient carrier spontaneously forms supramolecular struc-
tures which looks like filaments rolled into spirals made of α-helices
[114]. AFM also contributed to the understanding of interactions
between puroindolines, plant lipid binding proteins with antifungal
properties with wheat galactolipids [115]. This also applies to
the characterization of nanoscale film heterogeneity in models
of pulmonary surfactant [94,116,117], with an elegant experiment
performed directly on an air bubble coated with the surfactant [118].
By giving access to the nanoscale organization, AFM has played a
particularly important role for the understanding of LB films made of
ternary and complex mixtures of biological interests. Complementar-
ity with other recent techniques including FTIR, PM-IRRAS and mass
spectrometry imaging (TOF-SIMS) [119,120][115] will be likely
scientifically rewarding for many years to come.

3. AFM characterization of supported bilayers

3.1. Formation of SLB

Besides being a widely used model for analysing fundamental
properties of cell membranes, supported planar lipid bilayers (SLB)
[121] also offer unique possibilities for the development of nanobio-
sensors, nanomotors and nanotools [55,122–124]. Today, formation of
(SLB) is achieved using three main classes of methods. The first is
based on the use of a LB film for the proximal (inner) leaflet facing the
solid support. Deposit of the distal (outer)-leaflet facing the bulk
solution is done using either LB or LS technique. Formation of SLB from
adsorption of unilamellar vesicles, SUV, LUV and GUV [43,125,126]
regroups the second category of methods and the third uses spin
coating [127,128]. In addition, some protocols belong to two different
classes like the LB/vesicle fusion (VF) method [129]. SLB formation
from direct adsorption of detergent-phospholipid micelles was also
described [130,131].

For each class of method, AFM has brought crucial information for
establishing that differences in the experimental protocol, including
the temperature, the nature and roughness of supports (quartz,
glass, mica, gold, alumina, SiO2, TiO2,) covered or not by a polymer
layer, the use of water or various buffers, the lipid constituents etc,
can influence the bilayer properties [43]. Thus, for LB-based
protocols whose major interest is in the formation of asymmetric
bilayers whichmimic the situation found in cells plasmamembranes,
the earliest AFM investigations suggested the use of a LC phase, DPPE,
DSPE or DPPC, which enhances the bilayer stability, as the proximal
layer in building stable bilayers on mica from LB/LB deposition
processes [91,132–134]. Even under these most favourable condi-
tions and despite good transfer ratios during their formation, AFM
examination revealed the presence of defects and holes in these SLB
that escape optical detection [132,135–137]. According to the
fluorescence interference contrast microscopy method (FLIC),
extensive loss of transmembrane asymmetry occurs during the
formation of SLB by the use of LB/LS protocol. Moreover, the use of
tethered polymer support for the initial monolayer does not improve
lipid asymmetry in the resulting bilayer which would be only
preserved using the LB/VF method [32,138]. Contrasting with these
LB data on methods initially developed to insure SLB asymmetry,
vesicles fusion expected to provide symmetrical bilayers can result in
the formation of asymmetrical bilayers, as a function of the support,
buffer, lipid composition, vesicles size and temperature conditions
used [139,140–142]. Although not complete, the understanding of
mechanisms and parameters involved in SLB formation from lipid
vesicles has strongly benefited from AFM and its association with
quartz crystal microbalance dissipation monitoring (QCM-D)
[43,143–146]. It is worth noting that, like for LB-based methods,
optically continuous SLB formed by vesicles fusion are most often
pierced by holes, even for lipids in Lα or Lo phases (Fig. 6)
[44,136,145,147–149]. This imposes to probe different zones of each
sample with large scans for interpretation of dynamic data. Finally, it
is worth noting that the same three main classes of methods can be
used to prepare supported double bilayers, [128,150–152] examined
by AFM only in a few occasions [153,154].

3.2. AFM imaging at room temperature of domains in SLB

Like LB films data, most AFM information collected from SLB has
been based on the characterization, at room temperature, of samples
topographical height differences between ordered and disordered



Fig. 6. Supported DOPC/DPPC 1:1 bilayers made by vesicle fusion. Influence of substrate. A, B, C and G: SLB on mica; D, E, F and H: SLB on glass. White arrows in (C) point at the
presence of holes in the bilayer whereas dark arrows indicate the presence of aggregates (and/or non-fused liposomes). In D and E, white arrows show the presence of patches made
of unconnected, tiny, pieces of bilayers while black arrows indicate glass zones not covered by the bilayer. The white arrow in H shows a zone of the bilayer with a different
organization. Bars: A, B, C: 2 μm; D, E, F: 5, 1, 0.3 μm. vertical z colour scale: A, B, C: 20 nm; D, E, F: 30, 30, 10 nm, respectively. Note that the bilayer surface is N8 nm above the substrate
(G and H virtual sections).
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phases which depend on the acyl chains length of glyceropho-
spholipids and sphingolipids. Various binary mixtures under Lα/Lβ'
phase separation were first characterized on asymmetrical SLB built
by LB/LB transfers where the proximal leaflet facing the support was
made of a single phospholipid in a single phase. Briefly, in this
configuration, the topography of SLB is close to that of LB films having
the same composition, as long as transfers were performed at the
same surface pressure. This has been established for DOPE/DSPE
mixtures were the size of LC domains in monolayers corresponded to
that of gel domains in the DSPE supported DOPE/DSPE bilayer [155].
Thus, like for LB films examined in air, these SLB nanodomains are
expected to coexist with the larger domains which are observable by
fluorescence microscopy. It is worth noting that height difference
between fluid and gel phases lipids take a single value, generally
consistent with the results of X-ray diffraction studies when using low
scanning forces. Large scanning forces increase the thickness
differences because of different elastic properties of the two phases
[156]. For these highly asymmetrical samples, no evidence for time-
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dependent transmembrane migration of phospholipids has been
reported, which suggests that these LB/LB bilayers were more stable
than LB/LS bilayers. Besides topography, direct visualization of the
local surface charge in 1,2-dilauroyl-sn-glycero-3-phosphocholine
(DLPC) /1,2 dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS)
phase separated distal leaflet was obtained in aqueous solution from
the phase shift in oscillating mode [157]. Using phase-separated films
for both proximal and distal leaflet can result in LB/LB bilayers locally
presenting three quantized thickness levels (Fig. 6), as reported for
DPPC [70].

Imaging of SLB made by SUV or LUV fusion has demonstrated why
their complete characterization requires AFM, even for simple binary
mixtures. Taking the DOPC/DPPC 1:1 mixture as an example, AFM
imaging shows that, keeping the buffer composition, the fusion
temperature and the nature of the support (mica) constant, large
variations exist in the size, the spatial distribution of domains, the
extent of support coverage, the presence of holes, pieces of double
bilayers and non-fused vesicles still adsorbed (Fig. 6 A, B, C and D).
Changingmica for glass significantlymodifies the aspect of the surface
and enhances the heterogeneity of the topography between different
zones of the sample (Fig. 6E white and dark arrows). Consequently,
whereas the single step in height between the gel and the fluid
domains indicates they are superimposed in proximal and distal
leaflet, i.e. that coupling between leaflets is complete, when using
mica as a support, it is difficult to exclude the existence of a second
step in height, corresponding to asymmetric fluid/gel phase super-
imposition, with the glass support (see the virtual section in E). With
DLPC/1,2-distearoyl-sn-glycero-3-phosphocholine DSPC mixtures in
SUV, such uncoupling between leaflets can be induced by modifying
the temperature of vesicles during their formation and their
incubation before deposit on mica surface [140]. In the same study,
Fig. 7. Imaging Ripple Phase in multibilayers. Multibilayers were formed from di-C15:0 PC LU
E correspond to different experiments. A, B and E are deflection images. C and D: height image
the first bilayer. The white arrow in B strongly suggests the presence of triple bilayers.
time lapse study of SLB topography demonstrated that mixed
symmetry lipid bilayer can convert over a period of several hours to
either an asymmetric or a symmetric SLB, likely via a flip-flop at the
interface of domains. The rate constant for flipping event was
estimated to be ∼76 h−1 [46,140]. Phase coupling between leaflets
determined by AFM for a variety of binary phospholipid mixtures
under gel-fluid phase separation [158] was previously observed by
FRAP on DMPC/DSPCmultibilayers [159] and in GUV [64,160]. Besides
differences in the size of domains and their transmembrane coupling,
the behaviour of phase-separated binary mixtures made of synthetic
lipids leads to rather flat structures. This is not the case for mixtures of
natural SM with DOPC or DPPC which frequently adopt a variety of
mesoscopic morphologies including large stripes, tightly packed small
globular structures, branched-filaments decorated domains and gel–
gel phase-separated systems surrounded by a fluid phase [161]. The
diversity of structures imaged strongly evokes composition fluctua-
tions corresponding to spinodal decomposition process [162–166] and
also makes clear that small changes in experimental conditions can
lead to large changes in the domains morphology. Various morphol-
ogies also coexist within the same sample in fluid-Lo phase-separated
GUV containing SM [167], indicating that vesicles-support interac-
tions are probably not at the origin of the topography diversity in SLB.
Although much smaller than in GUV, the average size of ordered
microdomains in phospholipid binary mixtures examined by AFM
remains much larger than that predicted from FRAP and ESR
experiments on flat multibilayers or from Monte Carlo simulations.
Using similar DMPC/DSPCmixtures, the estimated size of gel domains
corresponded to ∼250 to 1500 molecules, i.e. less than 30 nm in
diameter [159,168,169]. On the other hand, earliest studies using
freeze-fracture electron microscopy and electron diffraction described
domains in the few-hundred nanometers to a few micrometer range
V in PBS buffer and imaged in the same buffer at room temperature. A, B and C and D and
s. Bar A, B, C: 300 nm; D and E: 250 nm.White arrow in A shows the absence of ripple on
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for liposomes made of various phase-separated binary mixtures of
phospholipids [170–172]. These differences could be at least partly
explained considering that the size of domains is markedly affected by
the thermal history of the samples, the composition of their bathing
medium [158,173,174] and by lipid oxidation [45,175]. Another unique
contribution of AFM to the characterization of phase-separation in
binary mixtures is the study of nucleation and domain growth process
which requires the use of high resolution imaging techniques in real
time. This was first achieved on DOPC/DPPC mixtures after a rapid
quench in temperature from 60 (miscibility state) to 23° (immisci-
bility region) [176]. More recently, using new facilities for controlling
the sample temperature under the microscope, nucleation rates and
growth of domains were determined on DOPC/DSPC and DOPC/
GalCer symmetric and asymmetric bilayers and the analysis of data
further allowed to determine the values of the interfacial line tension,
of the activation energy barrier and of the lateral diffusion coefficient
of lipid addition to a growing domain [177,178]. Differential resistance
of phase separated binary mixtures to detergent solubilisation can be
explored in situ by AFM. This has been done, for example, on DOPC/
DPPC mixtures treated with Triton X-100, a detergent frequently used
for DRMs preparation [89,179]. The behaviour of other binarymixtures
made of phospholipids more particularly present in identified cellular
organelles like mitochondria has also been characterized [95,180]. The
vertical sensitivity of AFM provided direct evidence for alcohol or
halothane-induced formation of interdigitated domains in saturated
phosphatidylcholine SLBs [181,182]. Vesicle fusion method on mica
with SUV and LUV made of a single saturated PC component or
equimolar DMPC/DSPC mixtures often results in the formation of
large patches of supported double bilayers [154,183]. Such double
bilayers are characterized by the presence of a ripple phase which
forms at the pretransition temperature upon heating from the gel
phase (Fig. 7). Ripple repeat distances corresponding to the stable
(13–15 nm) and metastable (26–30 nm) ripples were directly
measured from images taken in solution. In these samples, the surface
of the first bilayer, closest to mica, can be flat and featureless or
presents wavelike structures of low amplitude at room temperature,
likely as a function of the thickness of the aqueous film between the
mica surface and this first bilayer. These data strongly suggest that the
early AFM observation of a buffer-induced ripple phase in diC15-PC
bilayers [184] was due to the presence of double bilayers. Unfortu-
nately, to our knowledge, there is no data on the topography of phase
separated domains in hydrated supported double bilayers made by
the other techniques.

In biological membranes, because of the presence of Chol as a
major constituent of membrane lipids, phase diagrams strongly
suggest that microdomains formation results from Lo–Ld and,
eventually, gel–Lo–Ld phase-separations [185,186]. Uncertainties
exist firstly because the distribution of Chol between the inner and
outer membrane leaflets remains poorly known for the reasons
previously mentioned and secondly because of the likely existence of
different Chol pools which also might involve protein–lipid interac-
tions [187,188]. Behaviour of ternary mixtures made of DOPC/SM or
POPC/SM containing various amounts of cholesterol, taken as models
for “rafts” biological membrane microdomains, has been examined by
AFM [40,79,91,189]. Again, as for simpler binary mixtures and
probably further amplified by the SM domains polymorphism [190],
various morphologies were described in accordance with the
observation reported for GUVs [167]. For models of BBM exoplasmic
membrane leaflet, it was established that in accordance with
monolayer studies, gel-Ld phase separation exists in the absence of
Chol and that there is a range of Chol concentration (∼15–25 mol%)
where gel/Lo domains connect over the sample surface before
disconnecting again. Finally, contrasting with corresponding LB
films, no more domains could be detected for 33 mol% Chol [79].
AFM also allowed following in real time the consequence of in situ
manipulating Chol level on microdomains behaviour [191,192]. Three
remarks have to be done concerning all these experiments on ternary
mixtures model microdomains. The first is that, in most cases, AFM
can hardly discriminate a gel from a Lo phase only on the basis of their
bilayer thickness. X-ray studies on SM/Chol mixtures established that
thickness of the bilayer decreased only by 0.5 nm for temperatures
below gel to fluid transition Tc upon addition of 50 mol% Chol [193].
Moreover, presence of Chol in the POPC fluid phase can increase the
bilayer thickness by up to 0.4 nm for 30 mol% Chol [194]. This explains
why increasing Chol concentration in the bilayer reduced the height
difference between the Ld phase and the gel–Lo/Lo phases [79]. In fact,
coexistence of gel and Lo phases can be detected by the presence of
straight and angular portions at the interface of domains protruding
from the fluid Ld phase. As a consequence of this reduced difference
between bilayer domains thicknesses, assessing the degree of
membrane leaflet coupling becomes very difficult in these samples.
The second remark concerns the temperature control of commercial
AFMs sample stages which, due to the temperature sensitivity of
scanners and tips, took time to be developed. Consequently, most of
the AFM experiments on domains behaviour were done at room
temperature, i.e. ∼15 °C below the physiological temperature. Finally,
the third remark is also linked to a technical limitation i.e. that of AFM
scan rate. Whereas the “freezing” of structures in LB films allowed to
demonstrate the lateral heterogeneity of renal Brush Border Mem-
brane containing 33mol% Chol with the presence of small (20–70 nm)
domains [111], such small domains were not detected in correspond-
ing SLB. It can not be excluded that they escaped detection because
they were diffusing in the fluid phase during AFM imaging. Going to
quaternary mixtures of lipids brought original new data and added a
supplementary level in the image interpretation complexity. Introdu-
cing ceramide (Cer), the second messenger involved in sphingolipid
signal transduction which can account up to 10% of membrane lipids
[195–197], into model rafts under conditions where Ld–Lo [198] or Ld–
Lo–gel [199] phase separations occur, results in the detection of three
topographic levels. In both cases, this third level was also induced by
in situ sphingomyelinase treatment suggesting it resulted from the
displacement of a part of Chol from the Lo/Lo–gel domains to the Ld
phase [198,199]. To our knowledge, there is no published AFM images
of SLB made of lipid mixtures modelling the cytoplasmic membrane
leaflet composition, likely because they do not show phase separation
[32,200]. Unfortunately there is also no AFM report of the domain
coupling induced by models of outer leaflet [32].

3.3. AFM imaging of lipid–peptide and lipid–protein interaction in SLB

The interest of using simple membrane model systems like SLBs to
better understand interactions between proteins and lipids has been
recognized for long [201]. These model systems enable detailed
analysis of how the properties of lipids influence the structure and the
dynamics of proteins and in reverse how proteins and peptides affect
the lipid bilayer behaviour. The pioneer work of the Shao's group,
revealing the exquisite supramolecular organization adopted by
gramicidin A in DPPC bilayer [147], has been followed by numerous
AFM studies on lipid–peptide and peptide–peptide interactions which
all gave fundamental information that could not have been obtained
by other techniques. For example, this was the case of WALP, KALP,
HALP [202,203], primary amphipathic [204], and fusogenic tilted
peptides [205], all forming microdomains of supramolecular struc-
tures only visible at the nanoscale in SLB. Because they are mostly
associated with membrane domains enriched in SL and Chol, the
exoplasmic proteins class constituted by glycosylphosphatidylinosi-
tol-anchored (GPI) proteins was a good candidate for AFM studies.
Direct evidence for an insertion of a GPI in the most ordered domains
of binary or ternary model rafts mixtures was obtained taking
intestinal (BIAP) or placental (PLAP) alkaline phosphatases (AP-GPI)
as models [189,206]. AFM has also allowed to get direct information
on the associated transfer of lipids between phases [207] and on the
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effect of temperature on GPI distribution [208]. Indeed, the origin of
proteins, the SLB composition, the experimental conditions chosen for
protein insertion, the imaging temperature, are all parameters capable
to influence the imaged enzyme distribution (see [209] for a recent
review). It must be kept inmind that the time required to acquire such
images (between ∼1 and 5 min for commercial equipments) actually
precludes the quantitative determination of fluid ordered partition
coefficient for diluted, rapidly diffusing molecules [210]. Interactions
of amyloids [211–214], of annexins [215,216] with SLB and of a carrier
peptide, with or without its cargo, with phase-separated model rafts
[217] constitute other examples of the interest of AFM in characteriz-
ing lipid–protein interactions.

3.4. Temperature-dependence of AFM membrane domains imaging.
Interaction SLB-support

The first, relatively recent, AFM studies where the temperaturewas
varied in situ in order to characterize the SLB phase behaviour and
thermotropic properties were performed on DMPC [218] and DMPC/
DSPC samples [148]. Since that time, various laboratories have
investigated the thermal behaviour of SLB, essentially that of
disaturated PC species. The results are presented in Table 2 which
also includes the transition temperature (Tm) determined by other
techniques. The first observation, common to all AFM determinations,
is the increase in the transition half-width, as compared to DSC
determination on multilamellar vesicles [219]. The Tm itself was
reported to be unchanged [220] or to be increased from ∼4 to 16 °C
depending on the acyl chain length and the leaflet considered,
proximal or distal. For example, the upper end of DPPC melting was
reported to be as high as 52 °C for the proximal and 60 °C for the distal
leaflets of DPPC, [221,222]. Moreover, in these studies the melting of
the proximal leaflet started only after the distal leaflet gel to Ld phase
completion, indicating a complete decoupling of the two leaflets.
These data strongly differ from those obtained by DSC, also on mica,
showing a slight Tm shift of 2 °C for the proximal and of 3 °C for the
distal leaflet [223], associated with a modest increase in Tm half-
width. They also differ from those reported using FRAP for LB/LS
DMPC and DPPC SLB on oxidized silicon where no difference with
liposomes data were observed [121] and from the literature on beads
and nanoparticles-supported SLB which most often indicated a slight
decrease in Tm (Table 2). Studies of thermotropic and lyotropic
mesorphism of saturated diacylphosphatidylcholines have demon-
strated that the larger shifts recorded for the proximal leaflet would be
equivalent to a marked (N50% ) dehydration of the polar head groups
[224,225]. Comparing with DSC on multilamellar vesicles, the marked
widening of the transition is associated with an important decrease of
the transition cooperativity and can hardly be accounted for by a
Table 2
DMPC and DPPC transition temperature (Tm ) in liposomes and SLB.

Sample Technique used

MLV [219] DSC
SLB mica [222] AFM
SLB, mica, [221] AFM
SLB, mica [259] AFM
SLB, mica, [220] AFM
SLB, mica, [226] AFM
SLB, mica [218] AFM
SLB, Au (111) [260] AFM
SLB, mica [223] DSC
SLB silica bead [261] DSC
SLB glass beads [228] NMR
SLB, SiO2 nanoparticles [262] DSC
SLB silica bead [263] DSC
SLB, oxidized silicon [121] FRAP

Values given in brackets correspond to the lower and higher ends of the phospholipids me
a Leaflets uncoupling.
classical first-order process [218,226]. Taking into account AFM
experiments on supported double bilayers [154], the results presented
in Table 2 strongly suggest that the shifts in gel-Ld transition
temperature of lipids present in the proximal leaflet are markedly
dependent on the nature of the support, the thickness and composi-
tion of the aqueous sandwiched layer, in particular the presence or not
of divalent cations, the experimental procedure followed to prepare
the SLB and, as shown by the correspondence between thermotropic
behaviour expected from DSC and temperature-dependent AFM
imaging of model rafts [209], the lipid composition. Determination
of the aqueous layer thickness by various techniques like NMR,
neutron diffraction, X-ray reflectivity, FLIC, gives values between ∼0
and 4 nm [121,138,142,151,227–229]. This is also the case of the
thicknesses estimated by AFM from the distance between the bilayer
surface and the support, see for example [79,181,184,222] and Fig. 6.
The thinner the aqueous film, the higher the Tm shift. Why is the Tm of
the distal leaflet of SLBmade by vesicles fusion so much affected while
it is unchanged when using LB/LS transfers [121] remains
unexplained.

4. AFM recent developments and perspectives

The capacity to image surface topography from the nano to the
micro scale, in air and under liquid, has imposed AFM as a major tool
in the characterization of complex surfaces like microdomains in
model membranes. The possibility to follow in situ, at the nanoscale,
membrane modifications upon addition or insertion of drugs,
peptides, proteins, has also provided direct structural information
inaccessible to other techniques. Comparison of LB and SLB AFM data
has one more time emphasized the interest of each model to
characterize the membrane behaviour of complex lipid mixtures
containing several components. Thus, besides being excellent model
for studying pulmonary surfactant, monolayer films allow to deter-
mine the physico-chemical properties of one isolated membrane
leaflet, its ordering in two dimensions and surface interaction with
peptides, proteins or drugs introduced in the subphase as a function of
the surface pressure, keeping in mind the limitation associated with
film deposition on solid substrates. As discussed above, nanometer
scale details of supramolecular arrangements revealed by AFM are
obtained in air on filmswhere lateral diffusion is blocked andmight be
actually inaccessible for freely diffusing structures at the surface of
membranes under liquid buffer. The inverted AFM system equipped
with a tip approaching the liquid-air interface from the subphase
developed at the ETH Zurich [230], combined with grazing-incidence
x-ray diffraction and x-ray reflectivity techniques[231], could provide
direct access to the nanoscale organization of Langmuir films. SLB gave
such information for the membrane surface exposed to the buffer.
DMPC Tm (°C) DPPC Tm (°C)

23.9 41.4
(42–52)/(53–60)a

(23.6–30.3)/(31.3–37.5)a (44.8–51.4)/(52.9–59.4)a

(22–25)/(28–31)a (41–45.5)/(46.5–49.0)a

40.3–43.0
(26–35)/(36–47)a

28.2 (24–32)
22.5

40.4, 42.4, 43.8
∼21 ∼38.4
25.4
∼22.9 39.4

39.4
40

lting temperature of uncoupled proximal/distal leaflets.
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Local uncoupling of leaflets and time-dependent reorganization of
membrane surface associated with the loss of asymmetry or with the
addition of compounds that insert differently in mono and bilayers
due to hydrophobic matching are among numerous examples of
events where LB and SLB studies give complementary information.

While new imaging AC modes like phase modulation AFM [232],
higher harmonic AFM [233] and bimodal AFM [234] are expected to
lead to improved resolution of topographical features and local
mechanical properties, increasing the application field of the AFM
technique requires towiden the nature of the information collected, to
address the question of the membrane-support relationships and, last
but not least, to decrease by at least two or three orders of magnitude
the image capture time.

In what concerns the first requirement, fluorescence-based
imaging techniques are among the most powerful approaches for
examining structure–function relationships in biology. Following the
AFM coupling with far field fluorescence imaging [70], the use of
fluorescence correlation spectroscopy (FCS) has confirmed the
compositional/structural heterogeneity of ordered domains in a
phase-separated DOPC/DPPC binary mixture [235] and has shown
that the diffusion coefficients for fluorescent lipids and for two
membrane proteins in model rafts SLB were comparable with
diffusion in free-standing membranes [210]. The first images recently
obtained on DOPC/DSPC/Chol mixtures using a combined Polarized
total internal reflection fluorescence/AFM gave access to the order
parameter in the same SLB domains characterized by AFM [236]. It can
be predicted these fluorescence/AFM couplings will be helpful in the
understanding of domains behaviour and influence of fluorescent
Fig. 8. Imaging SLB formation by High-speed AFM (HSAFM). Membranes were made of a ter
NaCl, 2 mMCaCl2, pH 7.4) and sonicated. The lipid suspension (0.5mg/ml) was then directly
in continuous at a 975 ms/frame scanning rate (scan size 800×800 nm). SLB was formed fr
liposomes (arrowheads, 7.5–30 nm in height). Z color scale: 25 nm. The corresponding film
probes on the existence and size of domains [175,237–239]. Raman-
AFM [240], association of AFM with high-resolution secondary ion
mass spectrometry (Nano SIMS) which also demonstrated the
heterogeneity of local composition within a single domain and
between domains in order–disordered phase separated DLPC/DSPC
freeze-dried bilayer [241], will also provide the necessary comple-
mentary chemical analysis of domains for ternary and more complex
mixtures. Recent progress in nanoscale magnetic resonance imaging,
with resolution in the nanometer range [242], will also result in the
development of a new powerful tool for the understanding of
membranes structure.

There is good indication that solutions to the unpredictable effects
of support on membrane properties are under way. From the use for
AFM studies of SLB flat supports pierced by holes of various diameters
like those described by Steltenkamp et al. [243], Böcker et al. [244],
and by Goncalves et al. [245], one can expect to get direct information
on the parameters involved in the support influence on lipid bilayers
and lipid domain properties. Moreover, filling these holes by gels
having cytoplasmic-like properties, which can also promote phase
separations [246], would also offer SLB models closer to the
biomembranes situation.

Finally, while it has the unique capability to image biological
samples at a nanometer resolution in physiological solutions, the time
required to acquire one image between 0.5 and 10 min. has until
recently limited the application of commercial equipments either to
the high resolution imaging of immobile structures or to the low
resolution of fast diffusing structures or fast events. As recently
reviewed [247], the pioneers studies in the Viani et al. [248], Ando et
nary mixture made of DOPC/DOPS/biotin-cap-DPPE in buffer (10 mM HEPES, 150 mM
diluted into the buffer present in the HSAFM liquid cell and the bilayer formation imaged
om tubular lipid membranes (arrows, approximately 20 nm in height) and unruptured
is placed at http://www.s.kanazawa-u.ac.jp/phys/biophys/BBA/lipid.htm.

http://www.s.kanazawa-u.ac.jp/phys/biophys/BBA/lipid.htm


714 M.-C. Giocondi et al. / Biochimica et Biophysica Acta 1798 (2010) 703–718
al. [249] and Humphris et al. [250] groups for developing a high-speed
AFM (HS-AFM) capable to work in liquid on soft matter have now
succeeded in offering the capacity to film in real time the structural
modification of a functioning single molecule like the GroEL–GroES
interaction regulated by the ATPase [251]. As shown by the time lapse
study illustrated by Fig. 8 and the corresponding film placed at
http://www.s.kanazawa-u.ac.jp/phys/biophys/BBA/lipid.htm., it is
now possible to follow the SLB formation from a ternary phospholipid
mixture with a sampling rate better than 1 image per second. This
opens a new field of applications for the study of model membranes
including, for example, the early steps of bilayers formation and of
domains nucleation, the diffusion of nanoscale domains or of slow
diffusing proteins and lipids whose intra- and inter-molecular
motions remain important, even in the gel state [3,252,253].
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