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ScienceDirect
Proteins are dynamic in nature and function at the single

molecule level. To achieve a straightforward and in-depth

understanding of their underlying functional mechanism, we

need to directly observe protein molecules at work at high

resolution, without the use of protein-attached markers. To

realize such objectives, high-speed atomic force microscopy

(HS-AFM) has been developed and recently its capability has

been fully established. This approach opens a new avenue to

directly and closely observe individual molecules at

submolecular spatial resolution and sub-100 ms time

resolution. The captured molecular movies of proteins directly

report and provide great insights into how the proteins function.

Moreover, the very recent progress of HS-AFM technology has

extended its use to the observation of dynamic cellular

processes. In this article, I review imaging studies to show the

innovative power and potential of this new microscopy.
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Introduction
The essential attributes of proteins, namely structure and

dynamics, play central roles in their biological function.

Structural biology has been successful over the past 60

years in solving the detailed three-dimensional structures

of many proteins, by the use of X-ray crystallography,

electron microscopy, and nuclear magnetic resonance

spectroscopy methods. And yet, these methods are vir-

tually ineffective in solving the second important attri-

bute. To study the dynamics of proteins, single-molecule

fluorescence microscopy [1,2] and optical trap nanometry

[3] have been created and widely used over the last 20–30

years. However, these methods record the dynamic
www.sciencedirect.com 
behavior of optical markers attached to protein molecules,

and hence, the protein molecules themselves are com-

pletely invisible, even with superresolution fluorescence

microscopy bypassing the diffraction limit [4]. Due to this

indirectness of measurement, one has to infer how the

protein molecules are actually behaving behind the

recorded data. Thus, there have been no means that

allow the simultaneous recording of structure and

dynamics, preventing a straightforward understanding

of how proteins function, except for proteins that serve

rather as scaffolds than as functional entities. Under this

adverse situation, a technique capable of observing both

structure and dynamics of single protein molecules has

long been desired, even with lower resolution than those

of the conventional structural biology methods. To

meet this desire, high-speed atomic force microscopy

(HS-AFM) has been developed since 1993 [5,6], which

was put into practical use around 2008 [7]. The imaging

rate is now remarkably increased to higher than 10 frames

per second (fps) and, importantly, the tip force acting on

the biological sample does not disturb its function, while

in spatial resolution HS-AFM is comparable to or slightly

better than conventional AFM [8�,9]. This enhanced

performance has enabled the direct visualization of

dynamic structural changes and dynamic interactions

occurring in individual molecules, which is currently

not possible with other techniques. In fact, various appli-

cations of this microscopy have successfully revealed

dynamic molecular processes of proteins, yielding

remarkable findings and great insights into the functional

mechanisms of the proteins (see comprehensive reviews

[9,10��]). Moreover, this microscopy now allows the

observation of dynamic molecular processes occurring

on the surfaces of live bacteria [11�], specialized eukar-

yotic cells [12�] and probably isolated intracellular orga-

nelles, as well as dynamic processes occurring in

eukaryotic cells [13].

HS-AFM system
HS-AFM typically employs the tapping-mode, in which a

cantilever is oscillated in the Z-direction at or near its

resonant frequency so that the tip intermittently taps the

sample surface. In the HS-AFM system (Figure 1a),

various devices, including cantilevers (Figure 1b),

electronic circuits, the sample-stage scanner

(Figure 1c), and the cantilever deflection detection sys-

tem, are optimized for achieving high-speed performance

[7,9]. For example, the cantilevers are much more min-

iaturized (6–12 mm long) than conventional ones to

achieve high resonant frequencies in water fc = 400 kHz

to 1.2 MHz and small spring constants kc = 0.1–0.2 N/m.

In addition, a new feedback control technique capable of
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Figure 1
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Schematic illustration showing HS-AFM system and devices contained therein. (a) Overall arrangement of all devices contained in the HS-AFM system

(reprinted with permission from Ref. [14�]. Copyright 2012 Nature Publishing Group). (b) Scanning electron micrograph of a small cantilever for HS-

AFM. The inset shows an electron beam deposited amorphous carbon tip grown on the original tip. (c) Structure of a HS-AFM scanner for narrow area

imaging (<1 mm � 4 mm).
maintaining weak tip-sample interactions and active

damping techniques to suppress the scanner’s mechanical

vibrations have been implemented [7,9]. The speed

performance of an AFM system is expressed by the

bandwidth of feedback control fB, defined by the feed-

back frequency at which p/4 phase delay occurs in tip-

tracing of the sample surface. The most advanced HS-

AFM system has achieved fB = 110 kHz. The highest

possible imaging rate Rmax is a function of various

parameters, including fB, the scan range in the X-direction

W, the number of scan lines N, the spatial frequency of

the sample surface corrugation to be imaged 1/l, and the

maximum possible phase delay in tracing the sample

surface um at which the resulting excessive force exerted

by the tip does not disturb the biological function of the

sample. Rmax is expressed as Rmax = 2lumfB/(pNW)

[8�,14�]. um depends on the sample fragility and is typi-

cally �p/9 for proteins, according to previous imaging

studies [14�]. For example, under the conditions

fB = 110 kHz, W = 200 nm, N = 100, um = p/9, and

l = 10 nm, Rmax becomes 12 fps.

HS-AFM imaging of purified proteins
Thus far, various types of dynamic events occurring in

protein systems have been visualized, as listed in Table 1:

first, conformational changes; second, motor actions;
Current Opinion in Structural Biology 2014, 28:63–68 
third, diffusion and interactions in membranes; fourth,

self-assembly processes; fifth, wiggling motion of and

order–disorder transitions in intrinsically disordered

proteins (IDPs); sixth, enzymatic reactions; and seventh,

DNA–protein interactions. In some cases, molecular

structures are not well resolved. Nevertheless, the visual-

ized dynamic events inaccessible with other approaches

have provided significant insights into the molecular

processes, as exemplified in the imaging study of cellulase

hydrolyzing crystalline cellulose fibers [36]. The visual-

ization of interaction dynamics of membrane proteins

allows the assessment of interaction geometry and energy

in detail, as demonstrated [29,30]. The process of protein

self-assembly generally contains various events and struc-

tures: the formation of nucleation clusters, multiple inter-

mediates, multiple sequential and parallel growing

pathways with different kinetics, and structural polarity

and anisotropy. HS-AFM can show most, if not all, of

these progressing events and growing structures in one

video recording [31,32]. The visualization of thin and very

flexible unstructured peptide chains allows the fast

identification and characterization of the disordered

regions in IDPs (Figure 2a) [33–35].

Thus far, the most striking results have been obtained

in the observation of conformational changes of
www.sciencedirect.com



High-speed AFM imaging Ando 65

Table 1

Various types of dynamic events of proteins visualized by HS-AFM

Conformational changes

- Bacteriorhodopsin responding to light [15–17]

- Rotary propagation of conformational changes over the b subunits of F1-ATPase [18]

- ATP-induced channel pore dilation of P2X4 receptor [19]

- ATP-induced height change of Ca2+ pump [20]

- Agonist-induced height change of NMDA receptor [21]

- Height change of acid-sensing ion channel in response to acidification [22]

- Straight-to-curving structural change of FtsZ polymers [23]

- ATP-dependent rotation of AAA+ chaperone p97 [24]

Motor action

- Walking myosin V on actin filaments [25]

Diffusion and interactions in membranes

- Interaction between aquaporin-0 tetramers in reconstituted eye lens fiber cell membranes [26]

- Diffusion of and interaction between bacterial outer membrane protein OmpF molecules in reconstituted membranes [27]

- Diffusion and fusion of vacancy defects in streptavidin 2D crystals formed on supported lipid bilayers [28]

- Membrane-mediated interaction between ATP-synthase c-rings [29]

- Interaction of bR trimers with bR crystal edges in purple membranes [30]

Self-assembly processes

- Amyloid-like fibril formation by lithostathine [31]

- 2D crystallization of sphingomyelin-specific pore-forming toxin on planar lipid membranes [32]

Dynamics occurring in intrinsically disordered proteins

- Wiggling and shortening/extension motion of disordered regions in FACT protein [33]

- Order–disorder transition of a disordered region in FACT protein and effect of phosphorylation [34]

- Wiggling and shortening/extension motion of a disordered region in CENP-T [35]

Enzymatic reactions

- Processive movement and traffic congestion of cellulase hydrolyzing crystalline cellulose fibers [36]

DNA–protein interactions

- One-step and two-step dissociation of ssDNA binding protein oligomer from ssDNA [37]

- Cleavage of DNA by type IIF restriction enzyme [38]

- Nicking enzyme-mediated unidirectional movement of DNA motor along DNA stator track [39]

- ATP-independent unwrapping of mono-nucleosomes [40]

Diffusion and interactions on live cell surfaces

- Diffusion of crowded porin molecules on live bacterial outer surface [11�]

- Water channel aquaporin-0 binding to and dissociating from junctional microdomains on the lens cell surface [12�]
bacteriorhodopsin (bR) [15–17] and F1-ATPase [18] and

motor actions of myosin V [25]. The dynamic behaviors of

these proteins were visualized in unprecedented detail,

leading to significant findings. This is partly because their

dynamic actions are closely related to their biological

functions, and therefore, the functions themselves are

directly displayed on screen. A molecular movie of myo-

sin V walking on actin filaments showed its forward

movement with a �36 nm stride in a hand-over-hand

manner, rotational motion of the detached trailing head

around the forwardly biased neck-neck junction

(Figure 2b), foot stomp in the leading head

(Figure 2c), and the lever-arm swing of the leading head

spontaneously following the trailing head detachment

from actin (Figure 2b). The foot stomp and the swinging

lever-arm motion were observed for the first time by HS-

AFM. HS-AFM movies of actin-bound myosin V cap-

tured in the presence of ADP or under nucleotide-free

condition revealed other dynamic actions, which led to

the clarification of the hand-over-hand walking mechan-

ism and an important discovery concerning the usage of

ATP energy. As exemplified in this HS-AFM study, HS-

AFM imaging has the unique feature that multiple

dynamic events can be detected simultaneously in one
www.sciencedirect.com 
video recording. This feature makes a stark contrast with

previous single-molecule techniques wherein only a sub-

set of events can be detected in a specifically designed

assay. Furthermore, unlike previous single-molecule

techniques, HS-AFM allows us to know how individual

molecules are really situated under assay conditions

because of the visibility of both molecules and their local

environments. Owing to these excellent features of HS-

AFM imaging, the observed molecular events can be

straightforwardly interpreted, leading to definitive con-

clusions; hypotheses and data interpretations play a much

smaller role in deriving conclusions.

The high-resolution power of HS-AFM, capable of dis-

tinguishing individual domains and subunits within a

protein molecule, is important, especially in identifying

a local portion undergoing structural changes and finding

interplay between subunits. For example, in the study of

the a3b3 subcomplex of F1-ATPase (i.e., rotor-less F1-

ATPase) in the presence of ATP [18], the individual

subunits were clearly distinguished. Therefore, confor-

mational changes occurring in a defined rotary sequence

among the subunits were observed (Figure 2d), which led

to a discovery that the intrinsic cooperativity responsible
Current Opinion in Structural Biology 2014, 28:63–68
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Figure 2

(a)

0 s 0.47 s 0.74 s 1.74 s 2.75 s

0.43 s

0.43 s

0.14 s

0.14 s

0.32 s 0.72 s 1.6 s 2.0 s 2.8 s

0 s

0 s

0 s

0 s 1 s 5 s 9 s

6.51 s 7.38 s 7.65 s
(b)

(c)

(d)

(e)

Current Opinion in Structural Biology

HS-AFM images showing various dynamic events of proteins. (a) Wiggling motion of and order–disorder transitions observed in an intrinsically

disordered region of facilitates chromatin transcription (FACT) protein. A shorter ID region belonging to the SPT16 subunit is deleted. Imaging rate,

�15 fps; scan area, 100 nm � 100 nm. (b and c) Stepping behavior (b) and foot stomp (brief detachment from and re-binding to actin) at the leading

head (c) of myosin V. The arrow in (c) indicates detachment of the leading head from actin. Imaging rate, �7 fps; scan area, 150 nm � 75 nm. (d)

Counterclockwise rotary propagation of conformational changes of the a3b3 subcomplex of F1-ATPase in an ATP-containing solution (each

15 nm � 15 nm image was clipped from an 80 nm � 80 nm area image). The red dots indicate the highest pixel positions. Frame rate, 12.5 fps. (e)

Light-induced conformational changes of D96N bR in the purple membrane. The illumination of green light was switched on and off at the beginning

and the end of the second image, respectively. The white and light-blue triangles indicate a trimer and a trefoil, respectively. Imaging rate, 1 fps; scan

area, 25 nm � 25 nm.
for torque generation to rotate the g subunit is elicited

through the b–b interplay alone, while the g subunit is

passively subjected to the torque. The high-resolution

power also allowed the detection of small outwards move-

ment (�0.8 nm) of the E–F helix loop of each bR mol-

ecule from the trimer center under light illumination

(Figure 2e) [15]. The outwards movement results in

the contact between three bR molecules (a triad desig-

nated as ‘trefoil’), each belonging to an adjacent trimer

(second frame in Figure 2e). This observation led to the

discovery of positive and negative cooperativity effects of

the bR–bR contact within a trefoil (not within a trimer) on

the decay kinetics of the photo-activated bR; the kinetics

is decelerated for a molecule early activated within a

trefoil, whereas accelerated for a molecule activated last

within a trefoil. It is hard to imagine how other approaches
Current Opinion in Structural Biology 2014, 28:63–68 
would allow the finding of these interplays between

subunits or neighboring molecules which underlie the

function or functional modulation of these proteins. As

such, HS-AFM imaging will disclose many intriguing

phenomena occurring in proteins, which other approaches

may fail to notice, even for protein systems that have

previously been scrutinized.

Future challenges in HS-AFM imaging
One of the greatest challenges in HS-AFM imaging is to

observe the dynamic action of individual protein mol-

ecules on the surfaces of live cells and isolated organelles.

This is because the surfaces are very soft and deformed by

the contact with the AFM tip. For the relatively rigid

surfaces of live bacterial and specialized eukaryotic cells,

HS-AFM can visualize individual protein molecules and
www.sciencedirect.com
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their dynamics, as demonstrated in the imaging of den-

sely packed porin (Msp1) molecules diffusing on the

outer surface of the magnetotactic spirillum Magnetospir-
illum magneticum AMB-1 [11�] and of water channel aqua-

porin-0 binding to and dissociating from junctional

microdomains on the lens cell surface [12�]. The surface

rigidity depends on its size. Therefore, it will probably

become possible to observe the dynamic molecular pro-

cesses occurring on the surfaces of, for example, neuronal

synapses and relatively small mitochondria and Golgi

apparatuses (0.2–0.5 mm).

The direct visualization of morphological changes occur-

ring in live cells is also a challenge in HS-AFM, because a

large area has to be scanned at a high velocity. The recent

progress of high-speed/wide-area scanners [13,41] and

active vibration damping techniques [13] has made this

visualization possible, as demonstrated in the visualiza-

tion of various dynamic events occurring in live bacterial

and eukaryotic cells; bacteriolysis caused by lysozyme

[13] and an antimicrobial peptide [42], the process of

endocytosis from the initial pit formation to budding of

protrusions around the pits and their disappearance [13],

and actin retrograde flow [13]. The resolution is higher

than optical microscopy but the information acquirable

with the HS-AFM imaging is limited and therefore can-

not provide significant findings. To expand the useful-

ness, HS-AFM should be combined with fluorescence

microscopy to make it possible to correlate the morpho-

logical changes with underlying molecular processes that

proceed in the cell interior.

For this combination, HS-AFM needs to employ the tip-

scan mode rather than the sample-stage scan mode. Very

recently, a tip-scan HS-AFM system has been developed,

allowing simultaneous capture of topographic and total

internal reflection fluorescence microscopy images, as

demonstrated [43��]. Various optical techniques can be

implemented with this new HS-AFM system. For

example, combining the system with the optical tweezers

will allow the visualization of a single protein molecule

under external force. Combining with tip-enhanced fluo-

rescence microscopy [44,45] will materialize high-speed

superresolution fluorescence microscopy, which allows

simultaneous dynamic recording of high-resolution topo-

graphic and fluorescence images in the same field of view.

Thus, HS-AFM technology has more potential to evolve

and hence will become an even more useful tool in the

biological sciences.

Conclusion
HS-AFM has recently opened new opportunities to

directly observe biological molecules in action at high

resolution, which allows more comprehensive under-

standing of how they function, even for those previously

scrutinized, as demonstrated in the recent studies

reviewed here. Because of this capability, HS-AFM will
www.sciencedirect.com 
become more common and indispensable in biological

sciences in the near future. The HS-AFM technology is

well established, but is still evolving toward its use for a

wider range of biological samples and phenomena. It is

hard to imagine what will become possible once all of the

technological capabilities of HS-AFM imaging have been

fully realized.
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