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Normal Modes of Stretched Polymer Chains 
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ABSTRACT We consider the normal modes and the response to a small oscillating force of one tethered 
polymer chain. The chain is originally stretched either by a force f applied at free end (case l), giving a 
“cigar“ shape, or by a uniform flow (case 2), giving a “trumpet” shape. Stretched chains can be understood 
as Rouse chains of impenetrable blobs: For case 1, the blobs are all identical and the long-wavelength 
modes are renormalized Rouse modes. A small oscillating driving force (f + f i  cos u t )  distorts the chains 
up to a distance f = ( f / r p ) v z ,  where 7 is the solvent viscosity. For case 2, the size of the blobs decreases 
from the free end to the attachment point. The modes are described by zero-order Bessel functions, but 
the dispersion relation of the p’th mode is still of the Rouse type (l/q, - $1. The penetration length of 
the distortion induced by a small oscillatory force applied at the free end is f = V/w, where V is the 
solvent velocity. All our results hold as well for an ideal or swollen chain. 

Introduction 
Manipulations of single macromolecules have been 

performed recently using magnetic beads or optical 
tweezers. In a pioneer experiment,l DNA molecules 
were grafted at one end to a glass surface and at  their 
other end to a magnetic bead. The elasticity of the DNA 
chain was measured by monitoring extension versus 
Stokes friction or magnetic forces on the bead. In the 
experiment, the chains are under a uniform tension and 
can be described as a string of blobs.2 Pincus3 calculated 
the dynamics of uniformly stretched chains and shown 
that they behave as Rouse chains of impenetrable blobs. 
For this case, we shall derive the response of the 
stretched chain to small oscillatory forces. As frequency 
increases, the portion of the chain responding to the 
perturbation decreases. This prediction could be tested 
directly by adding a small oscillating magnetic field to 
the flow or the static B field in the Bustamante 
experiment. In a second group of  experiment^,^ Chu et 
al. observed the stretching of DNA molecules to full 
extension under flows, and their relaxation was mea- 
sured when the flow stopped. We previously calculated 
the stationary state of chains stretched under flows and 
showed that they can be pictured as a string of blobs of 
decreasing size, forming a “trumpet”. We calculate here 
the normal modes of the trumpet of one tethered chain 
under flow and the response of the chain to small 
oscillatory forces acting on the free end. For the 
dynamics, the chain can also be described as a Rouse 
chain of impenetrable blobs, but the blob size is now 
nonuniform. This formulation leads to a generalized 
diffusion equation, where the diffusion coefficient de- 
pends upon local extension. 

In the first section, we review the steady state regimes 
of chains stretched by forces or flows. In the second 
section, we consider the normal modes of chains under 
forces or flows. In the last section, we calculate the 
response of the chain to  a small oscillatory force, which 
is a direct way to  investigate the dynamics of stretched 
chains. We use a scaling approach based on blobs, and 
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Figure l. Polymer chain stretched under a force (case l) 
pictured as a string of blobs of size 5. 

we ignore exact numerical coefficient and logarithmic 
prefactors which show up in the friction of one- 
dimensional objects. 

I. A Review of Steady State Regimes 
The steady state deformation of one tethered chain 

(N monomers) deformed by an external force f applied 
to the free end of the chain (Figure 1) has been discussed 
simply by scaling arguments.2 The chain can be de- 
scribed as a series of blobs of size 6: 

5 = kTlf (1) 

Equation 1 expresses a balance between mechanical and 
thermal energy kT. Inside a blob, the force f is a weak 
perturbation and we expect the local correlation of a free 
Flory chain, but at larger scales, we have a string of 
independent blobs. The number of monomers (size a )  
per blob g is related to E by 

6 = g”a (2) 

with 

v = ‘I2 8 solvent v = 315 good solvent 

The chain elongation L is 

L = (N1g)t = Nav‘,lkT)‘’-”y” (3) 
i.e., L = Na(fa1kT) in 9 solvent and L = N a ( f ~ l k T ) ~ 3  in 
good solvent. 

If we count the monomers 1, 2,  ..., N starting from 
the grafted end with location XI, ..., xi ,  ..., XN, according 
to eq 3, x,, = na(fa/ltT)(l-v)’y and the deformation of the 
chain dxldn is 
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Figure 2. Polymer chain stretched under a flow (case 2): (a) 
monoblock approximation; (b) trumpet shape. 

dxldn = a(falkT)“-””” (4) 

dxldn = a(fu1kT) (4’) 

dxldn = a ( f ~ I k T ) ~ ~  (4”) 

For an ideal chain 

For a swollen chain 

This analysis has been extended to describe the 
nonuniform stretching of one tethered chain immersed 
in a good solvent moving at velocity V.5 In strong flows, 
the extension L of the chain is predicted to increase 
quadratically with velocity. This result can be under- 
stood simply by scaling arguments. In a first ap- 
proximation (Figure 2a), the chain is pictured as a 
cylinder of length L, diameter E ,  called the “monoblock” 
picture. The friction force on the Nlg blobs of size 5 is 

F, = 6nq(N/g)(V ( 5 )  

F, is related to E by eq 1. In good solvent (Y = 3/5)  it 
leads to 

L = N3(a5/R;‘) ( 6 )  

where R1 = (kTlqV)112. 
In fact, the chain has to  be described as a succession 

of impenetrable blobs of decreasing size y called the 
“trumpet” picture, because the friction force increases 
from zero (free end) to qLV at the attachment site 
(Figure 2b). The friction force f l x )  at distance x = XN - 
xi from the free end is the sum of the friction on all blobs: 

(7) 

The size y(x)  of the decreasing blobs is given by eq 1: 

y(x) = kTlflx) - l lx  (8) 

Inserting f l x )  in eq 4 leads to 

Figure 3. Renormalized Rouse model for case 1: string in 
series of rigidity K = kTfEz and friction coefficient 6 = 76. 

(i) In good solvent, the integral of eq 9 gives 

(10) 

For the total extension L (n = 0 in eq lo), it leads to eq 
6. 

(ii) In 8 solvents, or for ideal chain like DNA semi- 
flexible polymers (Ro = N1I2a), the deformation is 
enhanced and eq 9 leads to an elongation increasing 
exponentially with velocity: 

513 u3 x U 3 =  (N - n)(a IR, ) 

L = R ,  exp(Na21R4) (11) 

The ideal chain is thus fully extended above a threshold 
velocity V = Rdzz, where zz = qR$kT is the chain 
relaxation time, as observed in ref 4. For these reasons, 
experiments on swollen chains stretched under flows 
will better allow monitoring of the progressive stretch- 
ing under flows. Our calculation of the stationary 
stretched configuration is based on the local force/ 
deformation relationship (eq 4). As shown in the 
Appendix, this is strictly equivalent to the recursion 
method used in ref 6. Equation 4 is in fact more 
powerful to describe transient effects, as shown in ref 
7. 

11. Internal Modes of Stretched Polymer Chains 
(A) Uniform Stretching (Figure 3). The internal 

modes of chains stretched by an external force has 
already been discussed in ref 3 using a different ap- 
proach based on scaling concepts: it is shown that the 
chain behaves as a one-dimensional Rouse chain of 
impenetrable blobs of size E .  We derive here the modes 
using the following picture: the chain is a series of 
springs of rigidity kT/e2 and friction coefficient z = 76. 
The Rouse equation expresses the balance between (i) 
elastic restoring force fel and (ii) friction force f v .  For 
f e l :  each blob ii(ii = 1,2, ..., Nlg) experience of force from 
its two neighbors. If ufi is the deformation of the nth 
blob, around its equilibrium position (xn = fie + UA), 

kT kT a2u 
fel = ---[UA+, - U A  + UA-, - Unl = - y c2 g2 aii 

(12) 

where we have gone to the continuous limit. For f,: on 
the nth blob, as shown in ref 3, 

f, = 76 (au,iat) (13) 

The balance fel = fv leads to  the Rouse equation: 

(14) 

When the relaxation time Zb of a blob (8) l/Zb = kT/qE3 
is introduced, eq 14 becomes 
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Table 1. Zero of the JO Bessel Function 

\ 

4 '  1 

Figure 4. Rouse model extended to case 2. The rigidity of 
the strings ( K  = kT/y2) increases from the free end toward the 
grafted end. 

Equation 14 must be supplemented by boundary condi- 
tions at both ends of the chain: 

u,lo = 0 grafted site 

0 
\, 

X L  I 

au, 
= O  freeend (15) 

Because eq 14 is linear, it can be analyzed in terms of 
eigen modes: 

aii I N=NIg 

where p is an integer and the sinus is chosen to match 
the boundary conditions (eq 15). The time z, is the 
relaxation time of the mode p and is given by 

tdz, = 0, + 112)221P (17) 

Equation 16 is a quadratic dispersion relationship 
(l/zp - p2). 

In conclusion, the longest relaxation time is propor- 
tional to P: 

For a wave vector q [q = (p + 1/2)(dL), the deforma- 
tion U&) can be written as 

(B) Nonuniform Stretching (Figure 4). We now 
study the eigen modes of a chain stretched by an 
external uniform flow. As shown in Figure 4, the size 
of the blobs decreases and the Rouse equation is 
modified. We shall picture the chain as a sequence of 
fi' blobs (fi' = Jt dxly = L2/Rq). The elastic force on the 
fith blob is now 

~ ~~ 

P 1 2 3 4 5 
XP 294 5,6 8,6 11,7 14,9 

If we go to the continuum limit, eq 20 leads to 

The Rouse equation fel = fv becomes 

a k T a u -  au 
af i  y2 af i  v y a t  
_ _ _ _  

We set ds = Cy2/R:)dii, where Rq = kT/qV is the size of 
the largest blob. Equation 22, using eq 8,  becomes 

(23) 

We must solve eq 23 with the following boundary 
conditions: 

u(x = L,t) = 0 grafted chain end 

aulas = 0 free end (24) 

We can also write eq 23 as a function of x and t. With 
y = -(dx/dfi) and ds = -(dx/x), eq 23 becomes 

(25) 

We look for a solution u(x,t) = u(x) exp-(t/z). Equation 
25 leads to  

(26) 

The general solutions of eq 26 are the Bessel function 
of order zero, which have to satisfy boundary conditions 
(eq 24). We have then 

t 
u(x,t) = u0(2fi) exp- - z (27) 

where Jo( 2&) = 0 p = 1,2,  ... (28) 

dJdd2 = -Jl(Z) - Z and the free end condition is well 
satisfied. The dispersion relation is given by the zero 
of Jo(Z), which are listed in Table 1. The normal modes 
forp = 1,  2, 3 are shown in Figure 5. 

We have also solved eq 23 using the WKaT ap- 
proximation. Equation 23, with u = u(s)e-tlf becomes 

(29) a2uias2 + @U = o 
where K2 = xle-8Nz = xNz.  The JWKB solution is 

- 114 
u = u (L) expfi  J K ~ S  

O vz  (30) 

The integral in eq 30 is JK ds = 2(~~ne-"~/(Vz)") = 
2 ( d W " ,  and the solution that satisfies the boundary 
conditions (eq 24) is 

- ll4 
u = uo(g) cos 2 4 6  
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(A) Case 1: External Force. Let us consider the 
polymer chain stretched by an external force f. This is 
the case observed in ref 1 with a tethered chain attached 
by its free end to a magnetic bead of radius b and 
submitted to a flow at velocity V the force f is the 
Stokes force f = 6nqbV. We superimpose now a small 
oscillatory force f lu  = f 1  cos wt,  by using oscillatory 
magnetic fields. We calculate the response of the chain 
in the limit fllf = E << 1. The position of the iith blob 
can be written as 

1 1 

- O ‘ I  -1 

Figure 5. Normal modes of a trumpet for p = 1 , 2 , 3 , 4 .  

p = 0, 1, 2 ,  ... ( 3 1 )  

The longest relaxation time rp=o is given by zP=o = 
(LN)(4hz)2. If we set q = (p + V2)(dL), the mode can 
be written as 

l/tp = VLq2 ( 3 2 )  

Notice that eq 32 corresponds to the expansion of the 
Bessel function Jo(2) for large arguments. 

The same scaling relationship (eq 32) can be obtained 
in the “monoblock” picture (eqs 17 and 18), wi th f=  qLV. 
We expect the same behavior for ideal or swollen chains. 
The only difference is the L(V) relationship. 

In conclusion, we have calculated the scaling relation- 
ship of a strongly stretched polymer chain under a force 
and under a flow. Under a force, we have a Rouse chain 
with renormalized units (the blobs instead of monomers) 
and we find the classical modes of Rouse chains. Under 
a flow, the shape of the chain is a “trumpet”, pictured 
by blobs of decreasing sizes. This description leads to 
a generalized Rouse equation, with a diffusion coef- 
ficient x dependent [ZB = kT/C3 - z = xNI. The solutions 
u(x) are now Bessel functions instead of sinusoidal 
functions. For both cases, the mode dispersion relation- 
ships are of the Rouse type and can be written as 

l/Z, = (f/?/7)q2 ( 3 3 )  

with q = (p + l/2)(n/L) and f = qLV for case B. 
In the blob picture, i.e., renormalized unit, the swell- 

ing properties do not show up and we expect the same 
laws for an ideal or swollen chain. On the other hand, 
inside one blob, the chain is ideal or swollen, depending 
upon the nature of the solvent. 

111. Observation of Normal Modes: Response to 
Small Oscillatory Perturbations 

We discuss now how these modes can be seen by 
monitoring the response of the stretched chain to 
oscillatory perturbations. 

XA = i ic + u,(t) (34) 

The equation for u,, is the Rouse equation (14’) with the 
boundary conditions 

where E = ( 2 / 3 ) ( f i / f !  for a swollen chain and E = fi/ffor 
ideal chains. The solution of eq 14 is 

with q2 = -zWtb, leading to q = f(1- i)(wzd2)21/2. Then 

In the limit WZ@ >> 1, the response un(t) becomes 

(38) 

The amplitude of the last monomer response is then 

u d t )  = et, with Z = tf& 

The penetration of the deformation is limited to m 
blobs, with T% - ( w z ~ ) - ~ / ~ ,  i.e., to iit monomers, with iit 
= gfi .  If x is the distance from the free end, the 
distortion of the chain is limited to a distance f = 
mc. f and w are related by the dispersion relation 

w G f/?/7Z2 (39) 

i.e., 3 = f i  
(B) Case 2: Tethered Chain under Flow. We 

consider now the response of one chain stretched under 
a uniform flow and submitted to a small oscillating force 
acting on the free end (fu = f 1  cos ut). 

We have to solve the generalized Rouse equation (eq 
25) with the boundary conditions 

[attachment point u(x=L,t) = 0 
\free end 

where E = f11qV. The solutions are the zero-order Bessel 
functions: 

u(x) = Z 0 [ 2 4 ~ l  (41) 

The solution that satisfies the boundary conditions is 
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by Johner and Joanny’l because the flows are screened 
and the friction acts only on the tails of the grafted 
chains. 

The distortion induced for the small perturbation pen- 
etrates up to a distance f from the free end, related to 

3 = v/o (43) 

0 by 

The number of monomers rTt that respond to the force 
is deduced from eq 10 for a chain in good solvent 
condition: 

(44) 

and from eq 11 for a chain in a 8 solvent 

= (R;/u2) log(Z/R,) (45) 

Concluding Remarks 
A tethered chain deformed by a flow has a complex 

configuration. We can imagine several experiments to 
investigate this conformation: (i) measurements of the 
steady state regime, by monitoring the extension versus 
the amplitude of the flow; (ii) nonlinear dynamic mea- 
surements monitoring the relaxation of the chain if at 
time t = 0 the flow is suppressed; (iii) studies on the 
response of the stretched chain to a small oscillating 
force; this may provide a precise probe of the deformed 
state. We have set up a theoretical frame for the type 
iii experiments, discussing both uniformly (case 1) and 
nonuniformly (case 2) stretched chains. 

For case 1, we expect a simple Rouse behavior even 
when we are in good solvent conditions, provided that 
we discuss chain of “blobs”. The deformation up(x) in 
the p’th mode is sinusoidal [u = uo sin(@ + 1/2)(n/L>x)- 
e-t/z~l, and the relaxation ofp‘th mode is l/zp = (f/rl)(p + 

For case 2, the situation is more complex because the 
blob size decreases when we go from the free end to the 
tethered end of the chain. The structure of the modes 
is different, u = uo JO ( 2 ( ~ / u t , ) ~ ~ ) e - 3 ,  but the dispersion 
relations l/t@) (eqs 28 and 31) are very similar for large 
p .  When a small oscillatory force is applied at the free 
end, we find that the chains are distorted on a typical 
distance f ( w )  given by f = (f/rp~)’/~ for case 1 and f = 
V/o for case 2 (for both good or 8 solvents!). Here case 
1 and case 2 are quite different. The trumpet region is 
limited: at higher velocities, experiments12 and theory13 
are in favor of a “stem and flower” conformation with a 
completely stretched portion (the stem) terminated by 
a trumpet (the flower). Our discussion remains valid 
for the trumpet part of the deformed chain. 

On the whole, our description based on a renormalized 
Rouse chain has allowed us to analyze relatively simply 
the complex behavior of a stretched chain, from both 
ideal and swollen flexible polymers. Experiments to 
apply an oscillating magnetic field to the anchored DNA 
with a magnetic particule a t  its end and stretched in 
strong flows are underway.1° Our results can also be 
extended to the deformations of polymer brushes in the 
mushroom regime, where the grafted chains are well 
separated. It does not apply to the dense regime studied 

1/2)%%2). 
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Appendix 
Discrete Description of Stretched Chains under 

Flows. In this approach? the chain is pictured as a 
serie of blobs (Figure 2) of decreasing radii Rfi (because 
the tension increases from the tail to the head). In 
steady state, mechanical equilibrium relates the tension 
f, on blob ii (ii numbered now from the tail) to its friction 
coefficient: 

f,+l - f, = 5iiv (A.1) 

The friction coefficient cfi is related to the blob size 

5, = VR, (A.2) 

From eqs A.l and A.2, one can relate the tension Fa 

R, by a Stokes equation: 

where 7 is the solvent viscosity. 

to  the abscissa x :  

f, = V V U i  i = VVX (A.3) 

The size of the blobs RE shrinks from tail to head, as 
R, = kT/fa. The size of the largest blob is in perfect 
agreement with eq 6. RI is then given by 

R1 = kT/VVR, (A.4) 

From eq A.3, we can derive the profile of the trumpet y 
as a function of abscissa x :  

y = (u2/x)(VdV> (A.5) 

where VO = kT/yu2. Each blob ii contains g, = (RiJa)l/” 
monomers. The number n of monomers from the free 
end at abscissa x is 

n(x) = Cg, (A.6) 

Using the relation dx = R, dii, the continuous limit of 
eq A.6 leads to 

ii 

(i) In good solvent, v = 3/5, the solution reads 

(A.8) 

The full extension x = L corresponds to n = N in eq 

(A.9) 

A.8 in 

L = u (V/V0)2N3 = N3(u5/R:) 

(ii) In 8 solvent, v = ‘12, we find 

n(x) = (Vdv, log(x/R,) (A.10) 
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This leads to an exponential law for L(N) 

L = R, expN(VN,) = R, exp(Na2/Rq) (A.l l )  

in agreement with eq 11. 
The discrete description6 is identical to the local force/ 

deformation approach5 in the model of discrete blobs i i, 
located at  abscissa x,: 

&I& = R, (A. 12) 

ii, the number of blobs, is related to n, the number of 
monomers, by dn = g, dii, with g, = (R,/u)‘/”. R, is 
related to the local tension by the Pincus relationship 
c f a , = k T ) .  Then 

which is exactly the relation between local deformation 
and force. 
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