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Quantitative measurement of tip-sample interactions in amplitude
modulation atomic force microscopy
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The author introduces an algorithm for the reconstruction of the tip-sample interactions in amplitude
modulation atomic force microscopy �“tapping mode”�. The method is based on the recording of
amplitude and phase versus distance curves and allows the reconstruction of tip-sample force and
energy dissipation as a function of the actual tip-sample distance. The proposed algorithm is verified
by a numerical simulation and applied to a silicon sample in ambient conditions. © 2006 American

Institute of Physics. �DOI: 10.1063/1.2355437�
The amplitude modulation atomic force microscopy
�AFM�—also known as “tapping mode”—is the workhorse
under the scanning probe microscopy techniques applied in
ambient conditions and liquids.1–6 This technique is based on
a cantilever with integrated tip oscillating near the sample
surface �see Fig. 1�. During the approach toward the sample
surface the cantilever oscillation is influenced by the tip-
sample interaction which can be detected by a change of the
oscillation amplitude A and the phase �. Unfortunately, the
analysis of these signals is greatly complicated by the non-
linearity of the tip-sample force, resulting in instabilities and
hysteresis �see, e.g., Refs. 7–13�. Nonetheless, it has been
shown how the energy dissipation between the tip and the
sample is linked to the phase14–18 and the tip-sample force
versus time can be deduced by inverting the cantilever
trajectory.19,20

In this letter we present an approach enabling the quan-
titative reconstruction of tip-sample force and dissipation in
amplitude modulation AFM. The proposed algorithm is
based on the systematic recording of amplitude and phase
versus distance curves. Analytical formulas can be applied to
these data sets for the calculation of tip-sample force and
energy dissipation versus the tip-sample distance. The reli-
ability of the method is demonstrated by a numerical simu-
lation. An experimental application on a silicon sample dem-
onstrates its applicability.

Our analysis is based on the equation of motion for the
cantilever which is given by

mz̈�t� + �2�f0m/Q0�ż�t� + cz�z�t� − D − A�

= adcz cos�2�fdt� + Fts�z�t�, ż�t�� . �1�

Here, z�t� is the position of the tip apex at the time t; cz, m,
Q0, and f0=��cz /m� / �2�� are the spring constant, the effec-
tive mass, the quality factor, and the eigenfrequency of the
cantilever, respectively. The first term on the right hand side
of the equation represents the external driving force of the
cantilever. It is modulated with the constant excitation am-
plitude ad at a fixed frequency fd. The nonlinear tip-sample
interaction force Fts is introduced by the second term.

In the following, we solve the equation of motion by an
analytical approach and consider only the steady-state solu-
tion given by the ansatz
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z�t � 0� = D + A + A cos�2�fdt + �� , �2�

where � is the phase difference between the excitation and
the oscillation of the cantilever. For the mathematical treat-
ment of the nonlinear tip-sample force it is mathematically
advantageous to expand Fts into a Fourier series. With the
assumption that the tip touches the surface only slightly dur-
ing an individual oscillation cycle, it is sufficient to consider
only the first harmonics of the system.15,21 Introducing only
these terms into the equation of motion we obtain two
coupled equations,22

f0
2 − fd

2

f0
2 = Ieven +

ad

A
cos � , �3a�

−
1

Q0

fd

f0
= Iodd +

ad

A
sin � , �3b�

where the following integrals have been defined:

Ieven =
2fd

czA
�

0

1/fd

Fts�z�t�, ż�t��cos�2�fdt + ��dt , �4a�

Iodd =
2fd

czA
�

0

1/fd

Fts�z�t�, ż�t��sin�2�fdt + ��dt . �4b�

For the further analysis of Eqs. �3� we examine these two
integrals in more detail.

FIG. 1. Schematic setup of an amplitude modulation atomic force micro-
scope. A frequency generator is used for the oscillation of the cantilever. Its
oscillations are commonly detected with the laser beam deflection method,
but other detection methods might be used as well. The oscillation amplitude
A and the phase difference � between the cantilever driving and oscillation
are detected with a lock-in amplifier. The tip is assumed to oscillate between

D=d−A and D+2A=d+A.
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Introducing Eq. �2� into the first integral, Ieven can be
transformed to

Ieven =
2

�czA
2�

D

D+2A

Fts
z − D − A

�A2 − �z − D − A�2
dz . �5�

The amplitudes commonly used in tapping mode are consid-
erably larger than the interaction range of the tip-sample
force. Consequently, the tip-sample forces are nearly zero in
the integration range between D+A and D+2A. For this
large amplitude approximation23,24 the last term can be ex-
panded at z→D to �z−D−A� /�A2− �z−D−A�2�
−�A /2�z−D� and we get

Ieven � −
�2

�czA
3/2�

D

D+2A Fts

�z − D
dz . �6�

As a result of this computation we obtain an integral equa-
tion from Eq. �3a�,

�7�

The left hand side of this equation contains only experimen-
tally accessible data and we define this term as �. The benefit
of our transformations is that the integral equation can be
inverted24 and as a final result we get

Fts�D� = −
�

�D
�

D

D+2A ��z�
�z − D

dz . �8�

With this integral equation it is now straightforward to cal-
culate the tip-sample force from a spectroscopy experiment.
First, one has to calculate the � values as a function of the
actual tip-sample distance D=d−A. In a second step the tip-
sample force is numerically calculated from Eq. �8�.

Further information about the tip-sample interaction can
be obtained from Eq. �3b� since the integral Iodd is directly
connected to the energy dissipation.25,26 Introducing Eq. �2�
into the integral it can be shown that Iodd=−�E / ��czA

2�,
where �E is the energy dissipation per oscillation cycle. As a
consequence we get the following formula from Eq. �3b�:

�E = ��1/Q0��fd/f0� + �ad/A� sin ���czA
2. �9�

The result follows also from the conservation of energy prin-
15
ciple and is equivalent to the result of Cleveland et al.
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However, in difference to this former work we suggest to
plot the energy dissipation as a function of the nearest tip-
sample distance D=d−A in order to have the same scaling as
for the tip-sample force.

A verification of the proposed algorithm is shown in Fig.
2. We performed computer simulations of the method by
calculating numerical solutions of the equation of motion
with a fourth-order Runge-Kutta method.27 In order to intro-
duce a reasonable tip-sample interaction we considered a tip-
sample force with a conservative and dissipative part, i.e.,
Fts=Fcon+Fdiss. The tip is modeled as a sphere with radius R
that interacts with a flat surface and experiences long-range
attractive forces. If the tip comes very close to the sample
surface, the repulsive forces between the tip and the sample
are modeled by the well-known Hertz model. The adhesion
forces are considered by a simple offset. This approach has
been used in previous tapping-mode studies12,13 and results
in a force law given by

Fcon�z� = �− AHR/6z2 for z � h0
4
3E*�R�h0 − z�3/2 − AHR/6h0

2 for z � h0.
	 �10�

The effective modulus E*=1/ ��1−�t
2� /Et+ �1−�s

2� /Es� de-
pends on the elastic moduli Et,s and the Poisson ratios �t,s of
the tip and the sample, respectively.

In order to consider also a dissipative tip-sample inter-
action a viscous damping term with a distance dependent
damping coefficient is added, Fdiss=F0 exp�−z /z0�ż. The en-
ergy dissipation caused by this type of dissipation is given
by28

�E = 4�2fdAF0z0 exp
−
D + A

z0
�I1
 A

z0
� , �11�

where I1 is the modified Bessel function of first kind.
Figures 2�a� and 2�b� display the resulting amplitude and

phase versus distance curves during approach, respectively.
The following parameters have been used: AH=0.2 aJ, R
=10 nm, h0=0.3 nm, �t=�s=0.3, Et=130 GPa, Es=1 GPa,
F0=10−6 N s/m, and z0=0.5 nm. The eigenfrequency, the
driving frequency, the natural Q factor, and the spring con-
stant of the cantilever were chosen to be f0= fd=300 kHz,
Q0=300, and cz=40 N/m, respectively. The amplitude as
well as the phase curve show the often observed discontinu-
ity caused by an instability. The resulting jumps are marked
by arrows �see, e.g., Refs. 7–13 for a discussion of this

FIG. 2. �Color online� Numerical verification of the
proposed algorithm. Based on the equation of motion
�Eq. �1�� we numerically calculated the �a� amplitude
and �b� phase vs distance curves during the approach
toward the sample surface. Both curves show the typi-
cal instability and �c� only the data points before the
jump are used for the reconstruction of the tip-sample
force, �d� while the complete data set can be used for
the energy dissipation curve. The assumed tip-sample
interactions are plotted by the solid lines.
phenomenon�.
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The subsequent reconstruction of the tip-sample interac-
tions based on the data points of the amplitude and phase
versus distance curves is shown in Figs. 2�c� and 2�d�. The
assumed tip-sample force and energy dissipation are plotted
by the solid lines while the reconstructed data are shown by
the symbols. The agreement demonstrates the reliability of
the method. However, it is important to mention that the
often observed instability in the amplitude and phase versus
distance curves limits the reconstruction of the tip-sample
force. Due to the resulting discontinuity in the nearest tip-
sample distance D the � values are not smooth enough for a
reliable integration by Eq. �8� and the data points after the
jump should not be used for a reliable application of the
proposed algorithm. Nonetheless, the reconstruction of the
energy dissipation is not affected by the instability and gives
reliable values also after the jump.

An application of the method to experimental data ob-
tained on a silicon wafer is shown in Fig. 3 where we used
only the data points before the jump to reconstruct tip-
sample force and energy dissipation. As a consequence the
experimental force curve shows only the attractive part of the
force between the tip and the sample showing a minimum of
−1.8 nN. This result is in agreement with previous studies
stating that the tip senses only attractive forces before the
jump.8,10,12

In summary, we presented a method for the reconstruc-
tion of the tip-sample interactions in amplitude modulated
atomic force microscopy �tapping mode�. Based on the
analysis of the equation of motion we gave explicit formulas
for the reconstruction of the tip-sample force and energy dis-
sipation as a function of the actual tip-sample distance. The
reliability of the algorithm was demonstrated by a numerical
simulation showing the agreement between the assumed tip-
sample interaction models and the reconstructed interaction
curves. However, due the often observed jumps in the am-
plitude and phase versus distance curves the reconstruction
of the tip-sample force was limited to data points before this
instability.
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FIG. 3. �Color online� Typical dynamic force spectros-
copy experiment on a silicon wafer in air �parameters:
fd= f0=328.61 kHz, cz=33.45 N/m, Q0=537�. �a� A
measurement of the oscillation amplitude as a function
of the oscillation amplitude shows jumps at different
positions during approach and retraction. �b� The jumps
are also observed in the phase vs distance curves. �c�
Using the proposed algorithm the tip-sample force can
be reconstructed. This curve is calculated from the ap-
proach data. Only the data points before the jump are
used for the reconstruction of the tip-sample force. �d�
The energy dissipation per oscillation cycle can be eas-
ily obtained from the conservation of energy principle.
IP license or copyright, see http://apl.aip.org/apl/copyright.jsp


