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Quantitative dynamic-mode scanning force microscopy in liquid
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We describe a method to perform dynamic-mode scanning force microscopy in liquid with true
atomic resolution. A frequency-modulation technique is used to maintain constant amplitude, phase,
and frequency shift of the cantilever oscillation. As a consequence, the tip-sample interaction force
is well defined and quantitative. The force sensitivity is demonstrated by imaging and deliberate
bending of a peptide loop connecting transmembrane helices of the membrane protein
bacteriorhodopsin. The experimental setup allows further enhancement of the force sensitivity by
the use of small cantilevers. © 2006 American Institute of Physics. �DOI: 10.1063/1.2202638�
The scanning �or atomic� force microscope �SFM� is a
versatile tool to image surfaces with up to atomic resolution
in various environments. It allows the study of single bio-
logical molecules in their native �liquid� environment.1 In
such experiments, precise control of the tip-sample interac-
tion force is a prerequisite to achieve sufficiently large
signal-to-noise ratio without distortion of the sample. In ad-
dition, by a controlled variation of the interaction force, it is
possible to distinguish flexible and stiff components of
molecules.2 To image and interpret these biologically rel-
evant details, a quantitative control of the force is needed.

In liquid, the highest resolution—up to true atomic
resolution3—has been obtained in constant-force mode.
However, scanning a sample with a constant �vertical� force
implies �lateral� friction forces which can damage delicate
molecules, or detach them from the substrate. Furthermore,
as a dc/low-frequency technique, constant-force mode is sub-
ject to drift, which makes precise control of the interaction
force a difficult task. In dynamic mode, in contrast, lateral
forces are minimized, and the �high-frequency� signal can
easily be distinguished from �low-frequency� drift. A robust
quantitative force control can be achieved using a frequency-
modulation detection technique.4 Frequency-modulation
scanning force microscopy �FM-SFM� has recently been
shown to yield quantitative force measurements5 and images
with true atomic resolution6 in liquid.

This letter describes how to perform high-resolution
FM-SFM imaging in liquid with a well-defined, quantitative
force. On mica, atomic-scale defects and a corrugation of
40 pm are clearly resolved. The precise control of the inter-
action forces is demonstrated by imaging a peptide loop be-
tween two transmembrane helices of bacteriorhodopsin, and
by deliberately bending it.

When a cantilever oscillates in the vicinity of a sample
surface, the gradient of the conservative tip-sample interac-
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tion force leads to a shift �f of the eigenfrequency f0 of the
cantilever. Dissipative forces damp the amplitude A of the
oscillation, but do not change �f . The conservative tip-
sample interaction varies over the oscillation cycle of the
cantilever. It can be quantitatively determined, provided that
�f is known as a function of the tip-sample distance and that
A is kept constant by adjusting the driving force.7,8 In an
FM-SFM experiment, �f can be measured as the output of a
phase-locked loop �PLL� that keeps the phase constant
at −� /2 by adjusting the oscillation frequency.

Our SFM contains a Fabry-Perot interferometer with a
3 �m spot size and �3 fm/�Hz noise floor,9 and a rigid
fluid cell with cantilever, both mounted in a home-built unit
on top of a commercial microscope base �Veeco Multimode,
with E scanner�. The microscope is operated with a digital
FM-SFM controller �SwissProbe�.

The cantilever oscillation is driven by a piezoactuator on
which the cantilever support chip is mounted. This way of
driving the cantilever avoids adding complexity to the canti-
lever itself. However, due to the presence of mechanical
resonances other than that of the cantilever, both the ampli-
tude and the phase of the driven cantilever oscillation deviate
from the harmonic-oscillator response �Fig. 1�. This is a par-

FIG. 1. �Color online� Red, solid curves �left axes�: �a� amplitude and �b�
phase of a cantilever in buffer solution, actuated by the piezostack on which
the cantilever is mounted. Blue, solid curve �right axis in �a��: thermal noise
of the cantilever. The black, dashed curve overlaying the thermal noise in �a�
is a harmonic-oscillator fit. The phase corresponding to this fit is depicted as

a black, dashed curve in �b�.
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ticular problem of dynamic-mode operation in liquid, where
the quality factor of the cantilever Q�10 �compared to
�104 in vacuum�, i.e., comparable to or smaller than the
quality factors of other mechanical resonances in the
system.10

Since the measurement of �f relies on the phase of the
cantilever oscillation, it is important to verify that the mea-
sured phase near f0 follows the harmonic-oscillator phase
response over at least some kilohertz. To this end, the
harmonic-oscillator amplitude response of the cantilever is
determined by measuring the thermal noise of the cantilever,
as is shown in Fig. 1�a�. The noise floor of the measurement
is sufficiently low to allow an accurate fit,4 here yielding
f0=167 kHz, Q=10, and k=1.3�102 N/m �cantilever:
Nanosensors NCH�. From this fit, the expected phase re-
sponse of the cantilever is derived �dashed line in Fig. 1�b��.
Near f0, it closely matches the measured phase of the piezo-
driven cantilever �as has been verified for all cantilevers used
here�, justifying a quantitative interpretation of the measured
�f .

Another problem related to the small Q is the reduced
force sensitivity: The thermal noise of the cantilever leads to
a minimum detectable force gradient—averaged over the full
oscillation—proportional to 1/�Q.4 The sensitivity for short-
range forces, however, can be maximized by working at
small ��1 nm� amplitudes.6 Our Fabry-Perot interferometer,
with a noise floor of �3 fm/�Hz �see Fig. 1�a��, is particu-
larly suited for this.

Figure 2 shows constant-�f images of mica obtained
with the cantilever characterized in Fig. 1, recorded in a
buffer solution �150 mM KCl, 20 mM Tris-HCl, pH=7.8�
that is common for imaging biological samples in constant-
force mode.2 The scan speed is low �here 5.8 nm/s�, to make
sure that the sample corrugation �periodicity 0.5 nm� appears
well within the bandwidth of the feedback loops �typically
between 100 and 1000 Hz�. Thus �i� the feedback of the PLL

FIG. 2. �Color online� SFM imaging of the cleaved �001� surface of mus-
covite mica in buffer solution, with constant frequency shift �f =110 Hz and
constant amplitude A=0.64 nm. �a� Forward and �b� backward scan �fast
scan axis: horizontal�. The vertical scale �black to white� is 70 pm. A back-
ground plane has been subtracted from the data. The arrows point at two
examples of atomic-scale defects, visible in both the forward and the back-
ward scan. �c� Correlation-averaged image of the unit cell �vertical scale:
40 pm�. �d� Line sections along the yellow lines in �a� and �b�. The arrows
indicate the fast scan direction �forward/backward� for both curves. The
offset of the vertical scale is arbitrary.
can keep the phase constant, such that the �f output of the
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PLL reflects the true �f; �ii� the amplitude feedback can
keep the amplitude A constant; and �iii� the feedback control-
ling the vertical sample position can keep �f constant. With
respect to these points, our images differ from the atomic-
resolution images of Ref. 6. For all measurements, �f and A
can be found in the figure captions.

On mica, we then observe a corrugation of 40 pm and
atomic-scale defects �Fig. 2�. The measured corrugation of
40 pm represents an equi-�f surface, and the positive �f is
due to a �small� repulsive tip-sample interaction force. This
force can be quantified, here Fmax=0.5 nN, following the
procedure described below for experiments on bacterior-
hodopsin.

The same experimental setup can also be used to image
biological samples applying well-defined, quantitative
forces. As a test sample, the cytoplasmic side of purple mem-
brane has been imaged in aqueous solution. Purple mem-
brane contains bacteriorhodopsin �BR� trimers, packed into a
trigonal two-dimensional �2D� lattice.

Constant-force SFM topographs of purple membrane
have shown that the surface structure of BR strongly depends
on the interaction force.2 When imaged at minimum force,
i.e., �0.1 nN, the most prominent feature of BR is the bulky
peptide loop connecting the transmembrane helices E and F.
At higher forces, this loop bends, and otherwise hidden
shorter loops become visible, giving BR trimers a flat and
donutlike appearance. For comparison with the dynamic-
mode images discussed below, Figs. 3�a� and 3�c� show
constant-force images at �0.1 nN and at about 0.3 nN, re-
spectively. The cantilever spring constant is about 0.1 N/m;
the scan speed is 600 nm/s. The imaging conditions are
similar to Ref. 2.

In our FM-SFM setup, BR has been imaged in buffer

FIG. 3. �Color online� Constant-force mode and dynamic mode �with con-
stant frequency shift and amplitude� images of the cytoplasmic surface
of purple membrane in aqueous solution. The data have been flattened.
�a� Force �0.1 nN, and vertical scale �black to white� 0.67 nm.
�b� �f =400 Hz, A=0.64 nm, �F�=0.3 nN, and vertical scale 0.50 nm. �c�
Force �0.3 nN, and vertical scale 0.43 nm. �d� �f =800 Hz, A=1.0 nm,
�F�=0.8 nN, and vertical scale 0.31 nm.
solution �25 mM MgCl2, 150 mM KCl, 20 mM Tris-HCl,
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pH=7.8�, using cantilevers with spring constants ranging
from 10 to over 100 N/m. For the dynamic-mode �FM-
SFM� data in Figs. 3�b� and 3�d�, the cantilever characteris-
tics are f0=107 kHz, Q=6.2, and k=46 N/m �cantilever:
Nanosensors NCH�. The scan speed is 250 nm/s. The imag-
ing conditions are stable, i.e., no adjustment of parameters is
required while recording an image. This is a clear improve-
ment with respect to constant-force mode, where the operator
continuously adjusts the deflection setpoint to compensate
for drift.

To compare the images taken in FM-SFM to data ac-
quired in constant-force mode, the dependence of �f on the
tip-sample distance has been measured �Fig. 4�a��. Using a
procedure described in Ref. 8, the interaction force can be
derived from this �f-distance curve. Note that the horizontal
scale of the force-distance curve in Fig. 4�b� corresponds to
the tip-sample distance at the lower turning point of the os-
cillating cantilever. Hence, for a constant �f , the force varies
between a maximum value at the lower, and a minimum
value at the upper turning point. Both on mica and on BR,
the measured �f-distance curves do not show any significant
dependence on the lateral position within the displayed im-
ages. This implies that Fmax, Fmin, and �F� are well defined
within the scanned sample area. In Fig. 3�b�, the forces are
Fmax=0.6 nN, Fmin=0.2 nN, and �F�=0.3 nN; and in Fig.
3�d�, F =1.5 nN, F =0.3 nN, and �F�=0.8 nN.

FIG. 4. �a� Frequency shift �f and �b� corresponding interaction force F as
a function of distance from a purple membrane sample. Zero distance cor-
responds to the closest approach of the cantilever to the sample during an
oscillation with �f =800 Hz. Further conditions correspond to Fig. 3�b�. The
dashed, vertical lines in �b� indicate the shortest and longest distance be-
tween the tip and the sample for �f =400 Hz.
max min
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FM-SFM thus leads to similar images as constant-force
mode, even at higher vertical forces. This strongly suggests
that the fast vertical oscillation of the cantilever reduces the
lateral friction force on the molecules. The reduction of lat-
eral forces, the small sensitivity to drift, and the ability to
precisely measure and adjust the tip-sample interaction,
make FM-SFM highly suited to study single biological mol-
ecules, also when they are not arranged in 2D crystalline
structures.

Further optimization of dynamic-mode imaging can be
achieved by the use of small cantilevers.11,12 The setup de-
scribed in this letter uses a highly sensitive small-spot deflec-
tion detector9 and relies on piezoactuation of the cantilever,
not requiring any added complexity and mass to the cantile-
ver itself. It is therefore well adapted to optimally benefit
from the high eigenfrequencies �for relatively low spring
constants� of small cantilevers, thus further reducing noise or
enhancing the measurement speed.

This work has been supported by the Swiss Top Nano 21
program and by the NCCR Nanoscale Science.
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