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Imaging and characterisation of the surface of live cells
David Klenerman1, Yuri E Korchev2 and Simon J Davis3
Determining the organisation of key molecules on the surface of

live cells in two dimensions and how this changes during

biological processes, such as signaling, is a major challenge in

cell biology and requires methods with nanoscale resolution.

Recent advances in fluorescence imaging both at the

diffraction limit tracking single molecules and exploiting super

resolution imaging have now reached a stage where they can

provide fundamentally new insights. Complementary

developments in scanning ion conductance microscopy also

allow the cell surface to be imaged with nanoscale resolution.

The challenge now is to combine the information obtained

using these different methods and on different cells to obtain a

coherent view of the cell surface. In the future this needs to be

driven by interdisciplinary research between physical scientists

and biologists.
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Introduction
Modern biology has advanced to a stage where we now

have detailed information about the structure of many of

the molecules that make up the living cell, down to the

angstrom level. One of the key challenges is to now

understand how the molecular components of a cell

interact with one another and are organised in two or

three dimensions to form a fully functioning living cell.

To address this problem and deal with the fundamental

heterogeneity that is present in complex biological sys-

tems, new biophysical tools are needed that are capable of

imaging the topography and function of living cells down

to the level of individual proteins and molecular com-

plexes. These methods need to be applied at the resting
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state and then have sufficient time resolution to follow

the changes that take place during key biological pro-

cesses, such as endocytosis and exocytosis, or signaling.

One main approach taken is fluorescence-based, which

was for many years constrained by the diffraction limit of

light until recent advances in obtaining subdiffraction

limited resolution. The advantage of fluorescence-based

approaches is that it is possible to image individual

fluorophore-labeled molecules or macromolecular com-

plexes, but the disadvantage is that the cell topography is

not generally imaged at the same time and hence one

cannot relate the organisation of the labeled molecules to

the topography. This is especially important in the con-

text of understanding function at the cell surface because

it is becoming clear that its two dimensional organisation

is functionally important and occurs on a hierarchy of

length scales: protein clustering on the nanoscale, the

underlying cytoskeleton on the micron scale and supra-

molecular domains on the many micron scale. A highly

complementary approach, therefore, is to directly image

the cell surface using scanning probe microscopy and then

probe and image the cellular function. The challenge

here is the softness of living cells and obtaining suffi-

ciently high resolution. Both approaches have the chal-

lenge of imaging dynamics on live cells which for many

methods can lead to a trade-off between obtaining the

image in a short enough time to follow important

dynamics versus imaging sufficient points in order to

have the required spatial resolution. This review focuses

on recent advances in fluorescence and topographic ima-

ging of the cell surface and its function on the nanoscale.

Nanoscale fluorescence imaging
Fluorescence imaging determines the location of fluor-

ophore-labeled molecules and hence is limited by the

number of distinctly detectable fluorophores that can be

imaged at any one time. Recent advances have enabled

nanoscale fluorescence imaging [1,2]. One microscopy is

based on stochastic imaging of single photoswitchable

fluorophores [3,4] where individual fluorophores are suc-

cessively switched on, imaged and their position deter-

mined to build up the overall image; photoactivated

localisation microscopy (PALM) [5�,6] or stochastic opti-

cal reconstruction microscopy (STORM) [1,7,8�,9]. The

other microscopy is stimulated emission depletion

(STED) microscopy [10,11] that effectively reduces

the size of the imaging laser spot to obtain super resol-

ution. Using STORM, PALM or STED, fluorescently

labeled molecules have been resolved at 10 nm resolution

or better. The single molecule approaches are largely

limited to imaging the basal surface of the cell owing to
e of live cells, Curr Opin Chem Biol (2011), doi:10.1016/j.cbpa.2011.04.001
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the need to use total internal reflection geometry in most

cases. There is the concern that cell topography or struc-

ture may be altered by contact with the glass surface,

especially in cases where the cell spreads over the surface

to form a good contact with the glass, yielding better

signal to noise. By contrast, the STED approach is similar

to confocal microscopy in terms of the samples that can be

imaged, allowing images of the apical cell surface to be

obtained. It is also possible to image at video rates [12�] in

contrast to a frame rate of around 10 s per frame at best

with PALM. One concern with STED, however, is that

the high laser powers required may lead to photo-damage

in experiments on live cells. Both methods have the

general issue of how the molecule of interest is labeled

and this often involves the transient expression of auto-

fluorescent proteins, leading to increased expression of

the protein of interest and potential changes in behaviour

that are not relevant at physiological levels of expression.

One method that has the potential to solve this problem is

dStorm [13,14�], which uses normal dye fluorophores and

a reductant in solution for photoswitching [15] and could

in principle be used with fluorophore-labeled Fabs to

study endogenous proteins on the cell surface. The other

main issue for these methods is that the cell topography is

not measured at the same time as fluorescence imaging.

This makes it more difficult to relate the structure imaged

to the overall organisation of the cell surface. This could

be tackled by simultaneously imaging the cell membrane

using a lipid dye or the actin cytoskeleton but at present,

while two colour super-resolution imaging has been per-

formed, this is not routine yet. One method that has been

developed is based on measuring the position of two

fluorophores in the z direction with about 10 nm pre-

cision, differential nanometry, and this has been applied

to follow the relative displacement of key molecules

involved in clathrin mediated endocytosis with one-sec-

ond time resolution [16].

There have been two recent notable biological appli-

cations of these super-resolution methods. First, Hell

and co-workers [17��] used STED to directly image so-

called lipid rafts, showing that these are small (�20 nm)

and shorter-lived (�20 ms) than widely expected. Sec-

ond, Mark Davis and co-workers used PALM to image T-

cell receptor (TCR) organisation on T-cells five minutes

after contacting non-activating or activating lipid bilayers,

which revealed that the receptors were present in small

clusters of 5–20 complexes on the cell surface [18��]. Here

it would have also been useful to know the location of the

cell membrane in case the clusters detected just

represented regions of close contact between the cell

and the surface, where diffusion is hindered. In addition

this result is in disagreement with measurements per-

formed at the apical cell surface [23,26]. Most impor-

tantly, however, this experiment shows the potential of

super-resolution methods to reveal the nanoscale organ-

isation of proteins at the cell surface. Both examples
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illustrate the potential of super-resolution imaging to

now tackle key biological questions on the organisation

of the cell membrane.

Probing protein organisation in the cell
membrane
Perhaps the single most important piece of information is

to know whether given proteins need to form stable

complexes with other molecules in order to function,

or whether they function autonomously. This issue has

become especially controversial in the context of the cell

surface, where, in some cases, it is unclear whether

important groups of proteins are functional monomers

or dimers or, in other cases, whether they are pre-clus-

tered in protein islands. While the super-resolution ima-

ging techniques are relatively new there has been much

recent progress in exploiting diffraction limited two-col-

our single molecule fluorescence imaging and the comp-

lementary method of resonance energy transfer to address

this issue.

Single molecule imaging is limited to protein densities

below about 2 molecules/mm2, although many proteins

are present at the cell surface below this level and

methods are available using antibodies to label endogen-

ous proteins. Schutz and co-workers have recently devel-

oped a method allowing single-molecule analysis above

this limit [19,20]. This involves bleaching all the mol-

ecules in a region and then analyzing the diffusion of

labeled molecules back into this region at early times,

when the density is lower. The methods used to analyse

the labeled molecules at low densities employ similar

principles and are based on single or dual-colour

tracking of individual molecules using total internal

fluorescence imaging. An example of the principle of

one such approach, dynamic single-molecule colocalisa-

tion (DySCo; [23]) is shown in Figure 1. Associated

molecules will either be brighter than monomers or give

co-localised fluorescence from the two distinct fluoro-

phores. The increase in brightness or colocalisation

may be short lived if transient dimers are formed, allowing

the lifetime to be determined. Recent work has focused

on G-protein coupled receptors (GPCRs) [21�,22�], owing

to their importance as drug targets, on the stoichiometry

of the TCR in its resting state using DySCo [23], and on

lipid raft-like structures [24�]. Two recent GPCR studies

suggest the formation of transient dimers by labeled-

ligand bound GPCRs, which last about 100 ms before

dissociating [21�,22�]. Caveats with these analyses are the

extent to which the observed behaviour is contingent on

the cell responding to contact with the glass and confirm-

ing that the two GPCRs actually come into contact.

Recent work by Schutz suggested that the presence of

long-lived nanoscale platforms for a model GPI anchored

protein, lasting about 2 s in contrast to data suggesting

that raft-like structures are short-lived [24�]. On the apical

surface confocal microscopy has been used to determine
e of live cells, Curr Opin Chem Biol (2011), doi:10.1016/j.cbpa.2011.04.001
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Figure 1
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Principle of the DySCo method. Unassociated molecules show little

correlated motion (left) whereas associated molecules track within a

short distance of one another for multiple frames (right). Unassociated

molecules may track together by chance over a short distance (left,

middle of tracks) but the probability of this occurring for multiple frames

is small.
the oligomerisation state of proteins [26�]. Here coinci-

dent bursts of fluorescence are detected when associated

molecules pass through overlapped focused laser beams

allowing them to be detected and analysed [25]. This has

been used to show that on the apical surface of the T cell

the mobile form of the TCR is monovalent rather than

consisting of ‘dimers of dimers’ [26�]. The advantage of

taking measurements at the apical surface is that it might

prove to more faithfully reflect the ‘resting state’ of the

cell surface.
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Resonance energy transfer techniques, since they rely on

non-radiative energy transfer between donor and acceptor

fluorophores over distances less than �100 Å, are comp-

lementary methods to detect the association of proteins,

which are ideally suited to identifying very short range

protein interactions, such as those present in protein

oligomers [27]. Bioluminescence resonance energy trans-

fer (BRET utilises luciferase-coupled donors and GFP-

coupled acceptors. Compared to other types of RET

experiment, such as fluorescence RET (FRET), BRET

has the advantages of a very high signal/noise ratio gained

from luminescence detection and the fact that it is

unaffected by photobleaching, autofluoresence or other

optical effects [27]. A key issue for all RET experiments,

however, is that background signals may arise from ran-

dom interactions if the levels of donor and acceptor levels

are high. This is particularly problematic in situations

where the transfer efficiency for oligomeric interactions is

comparable to those arising from random interactions,

because the subunits are large or interact weakly, making

discrimination between random and oligomeric inter-

actions difficult. These problems are well illustrated by

studies of G protein-coupled receptors, whose widely

accepted capacity to form oligomers on the basis of BRET

experiments [28,29] has recently been questioned. Bona
fide oligomeric interactions can, however, be readily

identified by using existing theoretical principles [30–
32] in two types of BRET experiments [33�]: in the first

type, the combined number of donors and acceptors is

held constant, while in the second type the expression

level is varied and the acceptor/donor ratio kept constant.

The principle underlying the first type of experiment, i.e.
e of live cells, Curr Opin Chem Biol (2011), doi:10.1016/j.cbpa.2011.04.001
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ciency (BRETeff) on acceptor:donor ratio for dimers and monomeric

acceptor/donor ratio is increased by replacing one of four donors with an

panel), at relatively high acceptor/donor ratios the BRETeff (i.e. amount of

ment’ of the remaining three donors is unchanged. Conversely, for the

productive donor/acceptor dimer. (b) Graphical representation of the

s varied systematically.
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the less intuitive of the two approaches, is shown in

Figure 2. These applications of the theory were disputed

[34,35], but control experiments with very well charac-

terised known monomers and dimers had already borne

out their implementation [33�], as had similarly con-

structed FRET experiments [36]. Furthermore, the most

recent work on GPCRs utilizing single molecule fluor-

escence-based methods, as discussed above, has also

ruled out constitutive dimerisation [21�,22�]. Overall,

we suggest that conclusions regarding their organisation

are so significant in terms of understanding receptor

function that they ought not to be based on only one

analytical approach and hence there is a requirement to

use multiple methods to confirm a given finding.
Please cite this article in press as: Klenerman D, et al. Imaging and characterisation of the surfac
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Imaging the cell topography
Scanning ion conductance microscopy (SICM) and

atomic force microscopy (AFM) are both forms of scan-

ning probe microscopy (SPM) that can be used to image

the topography of live cells. SICM, originally developed

by Paul Hansma et al. [37], is based on a nanopipette in a

conducting solution, normally physiological buffer

(Figure 3). The pipette is made by melting capillary

glass normally under computer control using a com-

mercial pipette puller. The pipette inner radius, which

determines the resolution is typically between 10 and

50 nm and depends on the melting temperature of the

glass used. The application of a voltage, typically a few

hundred mV, between an electrode in the pipette and in
e of live cells, Curr Opin Chem Biol (2011), doi:10.1016/j.cbpa.2011.04.001
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wn to a position well above the sample before approaching the surface

same fixed hippocampal neuron obtained first with hopping mode (d) and
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the bath leads to a flow of Na+ and Cl� ions to the

electrodes. The ion flow is firstly limited by the small

aperture at the tip of the pipette and is further reduced

as the pipette approaches the cell and ion flow is shut

down. This reduction in ion flow as the pipette

approaches an ion-impermeable surface is used for dis-

tance feedback. Typically the pipette approaches the

surface so that the ion current has been reduced by 0.1–
1% from the limiting current when far from the surface

[38]. The major advantage of this method is that the

nanopipette can sense the presence of the surface when

still an inner radius away, typically 10–50 nm, so there is

no direct contact with the soft cell surface and the forces

exerted on the cell when scanning are negligible. A

common misconception, owing to its name, is that the

method maps surface conductivity but in the high-salt

conditions used for imaging the Debye length is less

than 1 nm so the method is insensitive to differences in

surface charge or the opening of ion channels, and the

distance feedback only responds to changes in surface

topography.

Like all SPM methods, because the SICM probe senses

locally at the tip it is not possible to scan highly con-
Please cite this article in press as: Klenerman D, et al. Imaging and characterisation of the surfac
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voluted surfaces since the side of the probe may touch the

sample before the tip has sensed the presence of a sur-

face. To address this issue SICM has recently been

modified so that the distance feedback control is not

continuous and the pipette always approaches the surface

from above (Figure 3). This has enabled complex

neuronal networks to be scanned [39�]. The advantages

of this approach are clearly shown in Figure 3 where

topographic features are much more clearly resolvable.

Since the pipette is no longer raster scanned over the

surface it also becomes possible to use adaptive resol-

ution where the pipette makes fewer or more measure-

ments of the surface topography depending on the

surface roughness. This has two advantages: firstly it

becomes possible to perform a lower-resolution scan to

identify the region of interest and secondly the imaging

time is reduced significantly.

The other important recent development in the use of

SICM is that it is now being used to image cellular

function as well as topography as shown in Figure 4.

The pipette probe has previously been used for local

delivery [40] and single channel recording [41] but its

combination with an electrode to measure local chemical
e of live cells, Curr Opin Chem Biol (2011), doi:10.1016/j.cbpa.2011.04.001
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ction by detecting ion channels in the cell membrane.
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fluxes, scanning electrochemical microscopy, opens up a

range of new possibilities in the nanoscale mapping of

chemical species and fluxes at the cell surface [42]. The

local delivery of reagents has been used to map b2

adrenergic receptors (b2AR) on live heart cells by using

fluorescence to detect where local application of ligand

from the pipette led to production of cAMP inside the cell

[43��]. Since the topography of the cells was measured at

the same time this allowed the receptors to be localised to

the t-tubules in normal heart cells. In diseased cells this

organisation was lost.

Atomic force microscopy is also widely used to image cells

although often the images thus obtained show the under-

lying cytoskeleton suggesting deformation of the cell

membrane. This is a strength and a weakness since it

is often useful to know the location of the cell cytoske-

leton but on the contrary the deformation can result in

mechanical stimulation of the cell. A recent study by

Shaffer and co-workers has directly compared AFM and

SICM imaging of the same fixed mammalian cells and

this shows that SICM deforms the cells far less than AFM

[44�]. Since the Young’s modulus of a live cell is an order

of magnitude less than fixed cells this study shows for the

first time that SICM is the best SPM method for minimal

deformation of the cell surface when imaging cell topo-

graphy. However, for mechanically harder cells such as

yeast or bacteria AFM has the advantage of higher resol-

ution and with the use of functionalised tips allows the

distribution of single polysaccharides and proteins to be

mapped [45–47].

Future outlook
Recent advances in scanning probe microscopy and

fluorescence microscopy mean that nanoscale imaging

of the surface of live cells is now possible with a spatial

and temporal resolution that allows biological problems

to be tackled. The challenge now is to exploit these

methods to provide new biological insights. Here it is

not only the performance of the methods that is import-

ant but also their reliability and robustness in order to be

able to perform experiments routinely, allowing con-

ditions and approaches to be optimised and to deal with

the inevitable variability of biological experiments. It is

therefore encouraging that AFM and SICM are com-

mercially available as are also STORM and STED

microscopes so researchers no longer need to build these

instruments themselves. Fluorescence microscopy

needs to be able to routinely image two or more colours

with nanoscale resolution so that relative positions of

molecules can be imaged and the formation of com-

plexes directly observed. SICM has been combined with

fluorescence imaging but this needs to be extended

below 300 nm so that the fluorescence and topographic

resolutions are more comparable, and the issue of the

registry between the fluorescence and topographic

images needs to be addressed so that the two images
Please cite this article in press as: Klenerman D, et al. Imaging and characterisation of the surfac
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can be overlaid. There is also a need to continue to

improve the imaging rate in SICM in order to follow

faster events. Currently the fastest rates are imaging

1 mm � 1 mm in 10 s. Given the fundamental limits of

the piezos and resonance frequencies of the SICM this

may require some redesign of the instruments as was

done for AFM to obtain video rate imaging [48]. The

larger topographic features often encountered on cells

are also a limiting factor. Methods to image cellular

function as well as the position of molecules or of the

cell membrane are also needed. This can be done using

fluorescent reporters inside the cell as was done to

detect triggering of b2AR receptors, or in a label-free

mode by detecting, for example, ion-channel activity or

chemical fluxes. Here maybe lies one key challenge for

the future since it is likely that with nanoscale imaging a

wide variety of structures or molecular associations may

be detected and one needs a method to determine

which are functional.

The other key challenge is to obtain a coherent picture of

the cell membrane structure from the analysis of differ-

ent cell lines, with only two or a small number of proteins

labeled, performed on either the apical or basal cell

surface. This will probably require the use of a number

of complementary imaging methods. Differentiated cells

with clear and reproducible cell structures such as sperm

cells, cardiomyocytes, neurons or epithelial cells allow

the merging of data taken on different cells. In addition,

the underlying cell cytoskeleton provides another

possible structure to which cell organisation can be

related. Studies of endogenous proteins are also required

to ensure minimal perturbation of the membrane organ-

isation and for any studies of the basal cell surface it is

important to ensure that there has been no artefactual

reorganisation on contacting the surface. In the future,

nanoscale images need to be recorded on cells with

reproducible structures under minimally perturbed con-

ditions so that information from different studies can be

combined. Only in this way can our understanding of the

organisation and function of the cell surface take full

account of its complexity.

Concluding remarks
In conclusion methods are now available that allow ima-

ging of the cell surface with resolution comparable to

scanning electron microscopy and can be performed on

live cells under physiological conditions. This is an excit-

ing advance and the challenge is now for the physical

scientists who developed these methods to work with

biologists interested in the biology of the cell surface. The

active involvement of physical scientists will not only

yield new and better imaging tools but will also bring

rigorous physical insights to the interpretation of what is

observed. Interdisciplinary science will therefore be

essential to converting this opportunity into reality over

the next few years.
e of live cells, Curr Opin Chem Biol (2011), doi:10.1016/j.cbpa.2011.04.001
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