Assembly line. The polyketide synthase PksA builds NSA from one unit of hexanoyl ACP (from hexanoyl-ACP) and seven units of malonate (from malonyl-CoA). NSA is then transformed into the carcinogen aflatoxin B1 by a series of oxidative reactions. (Top) Crawford et al. have determined the function of all domains within PksA. (Bottom). The assumption that the domains were once discrete proteins that became linked together during evolution, several groups have tried to cut fungal polyketide synthases into more manageable pieces. A simple approach (6, 7) has been to assume that sequences not present in similar, discrete enzymes are linker regions and that the remaining sequences are the domains. In vitro studies of the MAT and ACP domains from PksA obtained by this method confirmed their expected activities (6).

However, the Udwary-Merski algorithm (UMA) (8) has proved even more successful. UMA searches amino acid sequences for three indicators of structured protein domains (secondary structure, local hydrophobicity, and family homology), better distinguishing folded regions from linkers. One of UMA’s first achievements was to predict the location of the two missing activities in PksA: a starter unit ACP transacylase (SAT) domain at N terminus and a putative product template (PT) domain just upstream of the ACP. Subsequent experiments with the discrete SAT domain proved its function in recruiting hexanoyl ACP.

Using UMA as a guide, Crawford et al. have now further deconstructed PksA into seven different chunks (monodomain, dimeric and trimeric) and then recombined the pieces in vitro (1); every reaction contained the trimeric SAT-KS-MAT required for loading and condensation. Guided by the assumption that differences from wild-type behaviour could be attributed to the missing domain(s), analysis of the resulting products enabled the authors to determine each domain’s role. With high-resolution mass spectrometry, the authors detected predicted intermediates attached to the ACP domain, further supporting the assigned domain functions. As expected, a reaction mixture containing all domains resulted mainly in NSA.

In 2000, Staunton argued that cyclization of polyketone chains might begin during the chain-extension process (10): In this way, the polyketide synthase would avoid the task of protecting a long, reactive chain from spontaneous ring formation and establish the regiochemistry of all subsequent cyclizations. However, the mass spectrometry data reported by Crawford et al. suggest that PksA constructs full-length chains on its ACP before installing any rings. Tang and co-workers recently reached the same conclusion from studies of another nonreducing fungal PKS interacting with a discrete enzyme. The enzyme consistently acted at a specific carbon of the intermediate attached to the ACP, evidence that it was able to count along the fully extended chain to locate the correct site (7). Apparently, nature’s view of economy of catalytic mechanism does not always agree with ours.

PksA has close relatives in many other fungi, so the results of Crawford et al. are likely to be generalizable. However, the nonreducing polyketide syntheses are the simplest polyketide syntheses in fungi. The partially reducing polyketide synthases incorporate ketoreductase domains that act only during selected extension cycles, whereas the highly reducing polyketide synthases contain several additional catalytic sites. Neither system uses SAT or PT domains, and thus the basis for their complex programming is unclear. Application of the dissection approach to these polyketide synthases may soon provide some answers. UMA’s work is just beginning.

References

10.1126/science.1157677

BIOCHEMISTRY

Zooming Into Live Cells
Fabien Pinaud and Maxime Dahan

High-resolution optical imaging is providing real-time data on molecular processes in live cells.

Flying high over a city, a visitor from outer space on a mission to study the organization of urban life is likely to first notice a mostly static structure, intersected by a few traffic axes. But landing next to a main street, he will find a much more complex and dynamic situation, with people moving in various directions and interacting with each other.

Advances in high-resolution light microscopy now allow researchers to undertake similar journeys into the complexity of live cells. As reported by Westphal et al. on page 246 of this issue (7), optical techniques are no longer limited by the spatial resolution of optical microscopy, the dynamics of molecules or supramolecular assemblies are recorded with nanometer-scale accuracy in real time. By opening a window to molecular-scale processes, the techniques promise to elucidate many aspects of cell organization.

Light microscopy can be an essential tool in biology, offering a sensitive, noninvasive approach to probing the living world. The resolution of lens-based microscopes was, however, long thought to be limited to about half the wavelength of the light used (~250 to 300 nm for visible light). Many questions have remained unanswered because the assembly of many cellular structures takes place on a scale much smaller than 1/2 the resolution of conventional microscopy. Recent studies have shown that the resolution of conventional microscopy can be extended to much smaller scales (2).
key step is to find a means to reduce the number of fluorescently labeled molecules that are excited simultaneously at every acquisition step of the image. In one approach, the effective size of the exciting beam is reduced by stimulated emission depletion (STED), in which a doughnut-shaped quenching beam is wrapped around the excitation spot (see the first figure, left panel) (3). The result is akin to sharpening a pencil to draw finer lines. By scanning the “sharpened” spot over the sample, an image is built pixel by pixel, with a resolution currently down to 20 nm.

In another approach, microscopy techniques (termed PALM and STORM) take advantage of molecules that can be turned on and off with different light sources (4, 5). Using low activation intensity, a small and random subset of molecules in the field of view is activated. Next, a conventional image is taken, in which activated emitters appear as sparse spots. The molecules are then deactivated through photobleaching or by switching back to their off state. Each spot has a diffusion-limited extension of ~λ/2, but its center can be localized with much higher accuracy (see the first figure, right panel)—in practice down to 10 to 40 nm. By repeating the activation-imaging-deactivation cycle many times, a composite image made up of the positions of all individual molecules is created, much like in a pointillist painting.

High-resolution microscopy has recently been extended to three-dimensional (6) and multicenter imaging (7–9). It has allowed imaging of membrane proteins (10), cytoskeletal elements (9), and vesicles (11) in fixed samples with unmatched resolution.

Westphal et al. now extend STED microscopy to live cell imaging. By working on small regions of interest and finely tuning the size of the STED excitation spot, they find a suitable compromise between the number of detected photons and the scanning speed to achieve video-rate intracellular imaging with a resolution of ~60 nm. With such resolution, they record the motion of individual fluorescently labeled presynaptic vesicles in live neurons (see the second figure). The data reveal complex, continuous intracellular trafficking of the vesicles, with confined movements in nerve terminals. The experiments closely follow advances in PALM techniques that permitted in vivo tracking of membrane proteins (12, 13).

High-resolution microscopy provides many possibilities for biomedical research. The detailed organization of subcellular structures such as small membrane microdomains, cytoskeletal scaffolds, and multiprotein factories can be directly visualized. But one of the most exciting prospects is the possibility to follow, in real time, the dynamics at play in assembling, maintaining, and taking apart such structures. Indeed, it is becoming increasingly clear that most, if not all, cellular structures are maintained by continuous exchanges of transiently interacting and dissociating molecules (14). The kinetics of these exchanges, together with the structure-function relationship, can now be characterized in situ.

High-resolution microscopy will also transform the way interactions are probed in living cells, because it provides a much higher confidence level to determine if two molecules are very close to each other (and thus are potentially interacting with one another). This is particularly important for interactions mediated through supramolecular complexes larger than ~10 nm, a distance above which molecular proximity measurements based on energy transfer between fluorophores become impractical (15).

Looking in real time at individual molecular assemblies does not come without technical and conceptual challenges. Cell targeting of brighter and highly photostable fluorescent probes (16) will be required to study fast and complex dynamics over extended time periods. Analysis and processing of the large data sets collected from thousands of single molecules will demand substantial computer resources. Furthermore, as observed in many single-molecule experiments, the dynamics of individual objects in live cells is highly heterogeneous. Understanding the causes and implications of this heterogeneity will imply concerted experimental and modeling efforts. Ultimately, we expect high-resolution microscopy to illustrate that there is no average molecule, much as single-cell experiments debunked the myth of the average cell (17).

References and Notes
18. F.F. acknowledges the support of a Marie Curie Intra-European Fellowship.
doubly dehydrated (6) while still tethered to the protein. The complex intermediates were confirmed by the observation of each specific phosphopantetheinylation ejection ion within 1.5 ppm (1/4). These phosphopantetheinylation ejection ions were further subjected to ion trap fragmentation to provide data corroborating their proposed structures (figs. 5S to 59).

Apart from the relative populations of the fully extended polyketide intermediates, both two-part combination reactions gave remarkably similar outcomes (fig. 4). Elaboration of only the hexanoyl-primed ACP, and not the acetyl-primed (from KS-mediated loss of CO₂ from malonyl) or malonyl-primed ACP, supports the notion that the KS domain exerts control over the selection and extension of only specific starter units tethered to the ACP domain (in this case hexanoyl-S-ACP).

These data support the assertion that the PT domain maintains the correct intramolecular aldo addition intermediate and promotes its dehydration, facilitating nonenzymatic release of either the naphthopyrone 5 or the anthrone 2. Note that the ACP active-site tryptic peptide with the doubly dehydrated hexanoate + 7 acetate species (6, PT product) showed an absorbance under single-wavelength analysis (310 nm), in further support that this species is indeed the TE/CLC substrate. Combined with the drastic reduction in the flux to product(s) in the absence of the tailoring domains (fig. 2), the mass spectrometric data support assignment of the PT domain as an aromatase/cyclase domain.

The deconstruction approach taken here has demonstrated the synthetic roles of all recognized domains in an IPKS catalytic cycle, notably the product template (PT) domain, which should prove to be general for the broad class of multimod domain IPKs's. The insights afforded by the catalytic autonomy of these dissected, free-standing domains enable a rational strategy for engineering these enzymes to synthesize alternative native products.

References and Notes

15. Supported by NIH research grants ES01670 (C.A.T.) and GM067725 (N.L.K.), NIH Chemical Biology Interface training grant GM070421 (P.M.T.), and NIH postdoctoral fellowship GM079408 (J.R.S.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/320/5873/243/DC1
Materials and Methods
Figs. 51 to 59
Tables S1 and S2
References
31 December 2007; accepted 29 February 2008
10.1126/science.1154711

Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement

Volker Westphal,1* Silvio O. Rizzoli,2,* Marcel A. Lauterbach,3 Dirk Kamin,4 Reinhard Jahn,4 Stefan W. Hell1†

We present video-rate (28 frames per second) far-field optical imaging with a focal spot size of 62 nanometers in living cells. Fluoroscently labeled synaptic vesicles inside the axons of cultured neurons were recorded with stimulated emission depletion (STED) microscopy in a 2.5-micrometer by 1.8-micrometer field of view. By reducing the cross-sectional area of the focal spot by about a factor of 18 below the diffraction limit (260 nanometers), STED allowed us to map and describe the vesicle mobility within the highly confined space of synaptic boutons. Although restricted within boutons, the vesicle movement was substantially faster on nonbouton areas, consistent with the observation that a sizable vesicle pool continuously transits through the axons. Our study demonstrates the emerging ability of optical microscopy to investigate intracellular physiological processes on the nanoscale in real time.

Many questions in the life sciences could be answered if lens-based optical microscopy featured the resolution of electron microscopy, or if the electron microscope operated under physiological conditions. However, for reasons deeply rooted in the working principles of these systems, nanoscale resolution and noninvasive cellular imaging seemed mutually incompatible. Although widely accepted for decades, this notion is rapidly changing. Particularly in fluorescence imaging, far-field optical concepts have emerged that are no longer limited by diffraction (I–9). For example, stimulated emission depletion (STED) microscopy (I, 2) overcomes the diffraction barrier by producing fluorescent focal spots smaller than D ~ 200 to 300 nm in diameter. In a typical STED microscope, the focal spot of excitation light is overlapped with a doughnut-shaped spot of light of lower photon energy, quenching excited molecules in the excitation spot periphery by stimulated emission. The net result is a subdiffraction-sized fluorescent spot of diameter d ~ D/√I₁ + I₁/I₂ < D, which, if scanned through the specimen, renders images of subdiffraction resolution d. I₁ and I₂ denote the intensity of the STED beam and the characteristic intensity for the quenching of the fluorescent dye used, respectively. Adjusting I₁ >> I₂ allows one to tune the resolution d, in principal to the molecular scale.

Until now, the 20- to 70-nm resolution realized with STED has been used to map the nanoscale distribution of proteins inside cells (3) and on the plasma membrane (2). However, in all of these applications, the cells were fixed or basically static, leaving open the question of whether nanoscale imaging of fast physiological phenomena would be possible. Besides, the fast recording of high-resolution image frames is questionable given the limited number of photons emitted during the frame time. To meet these challenges, we balanced the reduction d, tuning the spot down to a size at which we were able to collect just enough photons from the features of interest to safely discern them from background. This strategy, a special feature of STED microscopy and related techniques (7), allowed reliable repeated imaging of rapidly moving small organelles inside living cells with nanoscale resolution. Specifically, we investigated the movement of synaptic vesicles in cultured neurons.

Although several steps in synaptic vesicle recycling are well understood (10), vesicle movement has been difficult to study, because the ~40-nm-diameter vesicles are housed in presynaptic nerve terminals of ~1 μm diameter, referred to as synaptic boutons. Most current insights have therefore been gained by sparse vesicle labeling (11–13), or by indirect methods, such as fluorescence recovery after photobleaching (14–16) and correlation spectroscopy (17–19).
Fig. 1. Real-time STED microscopy resolves single synaptic vesicles in living neurons. (A) Typical wide-field overview of cultured hippocampal neurons whose surface vesicle pool was labeled with mouse anti-synaptotagmin and Atto647N-labeled antimouse Fab fragments. (B) The labeled pool of vesicles is rapidly endocytosed, as observed by the reduced number of surface-exposed synaptotagmin molecules with increasing time between primary and secondary antibody labeling (20). Data are shown as the mean ± SEM, with each data point representing three to seven independent neuronal cultures. The dashed line indicates the background fluorescence determined from unstained preparations. (C) Images of a short fragment of a stained axon, in confocal mode (frame #1) and in STED mode (frames #2 and #3). The increased resolution in the STED image and the reappearance of vesicles in subsequent frames can be seen (three arrowheads indicate relatively stable vesicles; also, many other spots can be recognized in both frames). The insets in #1 and #2 indicate the color maps used. (D) Smoothing in confocal mode does not improve the differentiation of single objects, although this filtering method helps to identify superresolved vesicles in the STED images. (E) Images of a single stationary vesicle in confocal and STED mode (summed over 10 and 50 frames, respectively) reveal the cross-section of the focal spot in each mode. The line profiles through their center demonstrate the reduction in focal spot area by a factor of 18.

Higher spatial resolution enables the imaging of a sizable fraction of the vesicles simultaneously. We labeled cultured hippocampal neurons with monoclonal mouse antibodies directed against the intravesicular (lumenal) domain of the synaptic vesicle protein synaptotagmin (2). The antibodies were briefly applied to the neurons (on ice), followed by an exposure to Fab fragments from antibodies to mouse (anti-mouse) labeled with the organic fluorophore Atto 647N featuring Iₚ ≈ 10 to 20 MW/cm² at a de-excitation wavelength of 750 nm. This procedure ensured that only vesicles fused to the plasma membrane were labeled (2), because only these vesicles were exposed to the outside space [Fig. 1A and (20)]. The labeled vesicle pool encompassed as much as 10 to 20% of all vesicles (27); moreover, this pool fully participated in active vesicle recycling, as confirmed by the rapid endocytosis of the label (Fig. 1B). Two minutes after labeling, only ~18% of the label still resided on the surface; after 10 min, the value had dropped to ~8%.

Figure 1C shows that, unlike standard confocal imaging, STED microscopy enables the detection of single synaptic vesicles. Video-rate imaging was accomplished by scanning the excitation and depletion beam pairs in the focal plane by means of a 16-kHz resonant mirror in one direction; the perpendicular axis was scanned by moving the sample with a piezo actuator (22). This configuration allowed us to image an 1.8 μm by 2.5 μm area within 35 ms, i.e., at 28 frames per second [movie S1 and (20)]. By imaging the fluorescence onto a pinhole and acquiring images rapidly, noise levels were only ~0.1 and 0.02 counts per pixel inside and outside the axons, respectively (Fig. 1C). Although a single detected pho-

Fig. 2. Characteristics of synaptic vesicle movement. (A) Successive STED frames, filtered (movie S1). The arrowheads indicate three vesicles, which were tracked in all frames, localized in a subdiffraction space. The inset in frame #26 shows an intensity profile along the dotted white line. (B) Example vesicle traces in one movie. Occasionally, vesicles may seem trapped in a small area, whereas other traces are reminiscent of active transport (examples in inset). (C to E) Histograms of vesicle speeds: (C) based on displacement between two consecutive frames, (D) mean speed per trace, and (E) effective speed determined by dividing the distance between the end and the origin of the trace by the trace duration. See (20) for details of the analysis. The results are shown as the mean ± SEM, with movies analyzed from four independent experiments. Black bars show results with normal buffer (53 movies); depolarized preparations (Tyrode solution containing 70 mM KCl) are shown in gray (75 movies). (F) Number of vesicles (traces) entering the imaged area per second, as a function of the number of vesicles detected in the first frames of the movie. Results from four independent experiments, each consisting of a number of movies, are shown. The circle area is proportional to the number of movies analyzed. PDF: probability density function (probability normalized to unity).
ton in a pixel could still be due to noise, the probability of simultaneously detecting three or more photons is several standard deviations above the noise level, allowing us to conclude that the detected signal originates from labeled features. This reasoning was confirmed by comparing consecutive frames, where the labeled objects moved only slightly (Fig. 1C, middle and right panels); random noise, by contrast, would manifest itself as flickering. We also measured the frequency of false-positive identifications in preparations where no specific signal was expected (20); we found it to be on average around 0.1 events per frame. Applying $I = 400\text{ MW/cm}^2$ renders a full width at half maximum (FWHM) of our vesicle images of 62 nm (Fig. 1E), which means that the effective focal detection area is reduced by a factor of 18 compared to confocal imaging.

To further improve the confidence of vesicle recognition in our data, we applied a mathematical filter (Fig. 1D), which was essentially a smoothing algorithm. The resolution enhancement, coupled with the filter, allowed us both to observe individual vesicle movements (Fig. 2A) and to track individual vesicles automatically [Fig. 2B and (20)]. Although bleaching did occur during data acquisition (fig. S1), we were able to trace large numbers of vesicles, in ~130 movies of 1000 frames each, from four independent experiments. Although the vesicles resided mainly in a low-mobility state (Fig. 2C) (14, 15), most traces also included rapid movements, with the average speed for each individual vesicle peaking around ~2 nm/ms (Fig. 2D).

Because the movement was largely nondirectional, overall vesicle displacement appeared to be restricted (Fig. 2E). In agreement with previous observations, in which mobility was low also during synaptic activity (13), none of the mobility parameters increased substantially during stimulation with increased concentrations of KCl. To determine whether vesicle movement was diffusive or motor-driven, we perturbed cytoskeletal elements by using the actin-disrupting agent latrunculin A, or via the microtubule-disrupting nocodazole. The results (fig. S2) show that both drugs reduce vesicle mobility, indicating that active transport plays a role in vesicle traffic in axons. Nevertheless, vesicle motion persisted, suggesting that a substantial fraction of the vesicle movement is diffusive.

Even after bleaching the vesicles that were initially present (fig. S1), fluorescence persisted as new vesicles continuously entered the imaged area, at a rate of 0.5 to 3 vesicles per second in different experiments (Fig. 2F). This result, even taken at its lowest value, indicates that a fairly large number of vesicles passes constantly through the boutons [see also (23)].

As a control, we also imaged and analyzed the vesicles in chemically fixed neurons, in which case the vesicle movement was substantially reduced (fig. S3). We occasionally observed vesi-
icles instantly losing their fluorescence and then reappearing after up to a few seconds ("blinking"), a phenomenon known from single-molecule recordings but also from few-molecule ensembles (24) (fig. S4).

To better understand the patterns of overall vesicle movements, we investigated the sum of all frames for each of the individual movies. Areas where vesicles moved randomly appeared blurred, whereas stationary vesicles induced "hot spots" (Fig. 3A, left panel). A number of movies also showed linear patterns, indicative of vesicle routes or "tracks" (Fig. 3A, right panel). Typically, the hot spots assembled in areas reminiscent of confocal images of the synaptic boutons (Fig. 3B); the tracks, however, seemed to form between such boutons. The pattern of summed staining was not due to random vesicle accumulations, because it was relatively stable throughout each movie (Fig. 3, B and C). We analyzed 8 to 10 movies clearly dominated by hot spots or tracks, respectively, and we observed, as expected, that the vesicles within spot-dominated areas (boutons) tended to be much less mobile (Fig. 3, D and E), exhibiting a behavior much closer to that in fixed neurons (fig. S3).

To investigate the nature of the hot spots, we performed a running average analysis of the movies. Unlike the vesicles, the hot spots appeared to be immobile and persistent (Fig. 4, A and B). We frequently observed vesicles moving into hot spots and remaining temporarily trapped (Fig. 4C). However, we also observed vesicles disappearing instantly from hot spots, a behavior that we attribute to either blinking or to moving out of the focal plane. The hot spots were occupied for about 22% of the time (Fig. 4D); 31% of the vesicles passed through a hot spot and individual vesicles remained for 16% of the time in hot spots on average (Fig. 4E). The large number and wide distribution of hot spots argues against their being release sites where the vesicles would dock, because in this preparation typically only one, and rarely two, small active zones (~200 nm diameter) are found per bouton (25). The hot spots are likely to be "pockets" in the synaptic vesicle clusters where the labeled vesicles are occasionally constrained, although the molecules involved in the synaptic vesicle crosslinking have yet to be clearly defined (26).

In general, synaptic vesicles are quite mobile, although their tendency to move nondirectionally generally impedes their effective translation. Our data support the recently proposed stick-and-diffuse model (J8, 19), in which the vesicles repeatedly bind and diffuse away from the cellular surface. Nevertheless, a strong flux of synaptic vesicles is present through the axons (Fig. 2F). To place vesicle movement in perspective, if only one vesicle passes through a bouton each second, in about 3 min the number of vesicles passed through equals the total number of vesicles in the bouton (25). This suggests that the boutons from the same axon may be strongly interlinked, with their (recently endocytosed) vesicles participating in a common "superpool."

We conclude that STED microscopy can be used to investigate fast biological processes in vivo. The relatively low count rates in our images were less problematic than one might have thought, because the small spot size (62 nm), similar to the size of the vesicles (40 nm), allowed vesicles to be treated as distinct bright objects, which were easily distinguished from the low background. We used low-pass filtering to increase the confidence of detecting photon clusters representing vesicles. However, with a better knowledge of the background statistics and more sophisticated mathematical methods such as maximum-likelihood estimation, it should be possible to identify vesicles without such filtering. Moreover, brighter samples, or more sensitive imaging, would allow for higher resolution, a larger field of view, and/or faster recordings. Besides using higher densities of fluorescent markers, two relatively obvious improvements would allow us to reach this goal: STED with continuous-wave beams (27) would increase the instant photon flux and detection with two opposing high-aperture lenses would double the detection efficiency (28). This would permit further improvement of the data, because faster recordings would facilitate automated tracking at even higher densities, eventually allowing the rapid imaging of a multitude of intracellular processes in living cells.

References and Notes
20. Material and methods are available as supporting material on Science Online.
29. S.O.R is the recipient of a long-term fellowship from the Human Frontier Science Program. This work was supported in part by funds from the Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft to R.J., by a grant from the German Ministry of Research and Education (BMBF, Nanolive) to S.W.H., and by a grant from the German Ministry of Research and Education (BMBF, Nanolive, "Versuche/bewegungen durch Nanofehlerläsionen") to S.O.R. We thank I. Herfort for assistance with cell culturing and A. Di Nicola for his custom data-acquisition card. We also thank L. Kastrup, J. Keller, and A. Schirle for helpful discussions and for help with the software Inspector. Finally, we thank B. Rankin for critical reading of the manuscript.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1154228/DC1
Materials and Methods
Figs. 51 to 54
References
Movie S1
17 December 2007; accepted 8 February 2008
Published online 21 February 2008
10.1126/science.1154228
Include this information when citing this paper.