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SUMMARY

Many biological motor molecules move within cells
using stepsizes predictable from their structures.
Myosin VI, however, has much larger and more
broadly distributed stepsizes than those predicted
from its short lever arms.We explain the discrepancy
by monitoring Qdots and gold nanoparticles
attached to the myosin-VI motor domains using
high-sensitivity nanoimaging. The large stepsizes
were attributed to an extended and relatively rigid
lever arm; their variability to two stepsizes, one large
(72 nm) and one small (44 nm). These results suggest
that there exist two tilt angles during myosin-VI
stepping, which correspond to the pre- and postpo-
werstroke states and regulate the leading head.
The large steps are consistent with the previously
reported hand-over-hand mechanism, while the
small steps follow an inchworm-like mechanism
and increase in frequency with ADP. Switching
between these twomechanisms in a strain-sensitive,
ADP-dependent manner allows myosin VI to fulfill its
multiple cellular tasks including vesicle transport and
membrane anchoring.

INTRODUCTION

Myosin VI is a universal motor protein that has been identified in

organisms ranging from the roundworm Caenorhabditis elegans

to humans. It is responsible for many cellular functions including

endocytosis, protein secretion, and maintenance of both the

Golgi morphology and stereocilia (reviewed in Sweeney and

Houdusse, 2007). The myosin VI heavy chain, like many other

myosins, consists of two domains, the head and tail. The head

is composed of an N-terminal motor domain that consists of

a catalytic domain, which includes the actin and nucleotide
binding sites, a converter region, and a lever arm that includes

two calmodulin-binding motifs (unique insert and IQ motif)

(Bahloul et al., 2004). The tail is composed of four subdomains:

the proximal, medial and distal tails, and the C-terminal cargo-

binding domain. It is also the location where the two heads adjoin

to form a dimer, which is the state in which myosin VI inherently

functions in cells (Altman et al., 2007; Park et al., 2006; Phichith

et al., 2009). While the crystal structure of the head has been

solved, the structure of most of the tail remains unknown

(Menetrey et al., 2005, 2008).

As a dimer, myosin VI is a processive motor that moves in

a direction opposite that of most other myosins (Bryant et al.,

2007; Nishikawa et al., 2002; Park et al., 2007; Rock et al.,

2001; Wells et al., 1999). It has short lever arms that include

two calmodulin binding motifs and moves processively along

actin helical pitches with large step sizes (60–70 nm) (Okten

et al., 2004; Park et al., 2006; Yildiz et al., 2004) that are compa-

rable to myosin V despite the latter having much longer lever

arms (six calmodulin binding motifs) (Yildiz et al., 2003). In

general, the myosin VI stepsize is difficult to reconcile when

considering its short lever arms (Spudich and Sivaramakrishnan,

2010). Most likely, either myosin VI uses an alternative mecha-

nism from the conventional lever arm model, a model frequently

applied to other myosins, or its tail domain acts as an extended

lever arm. Along with its unexpectedly long stepsize, myosin VI is

also distinct in that its step sizes are highly variable (Lan and Sun,

2006; Rock et al., 2001; Sun et al., 2007; Yildiz et al., 2004).

Recently, Spink et al. and Sivaramakrishnan and Spudich have

proposed that myosin VI forms a dimer at the cargo binding

domain and that its medial tail is a stable a-helix that can act

as a relatively rigid extended lever arm (Sivaramakrishnan and

Spudich, 2009; Spink et al., 2008). On the other hand, Mukherjea

et al. have argued that myosin VI forms its dimer at its proximal

and medial tails, the latter consisting of a three-helix bundle in

the monomeric state that upon dimerization subsequently pulls

the helix junction to unfold and cause the lever arm to extend

in a somewhat flexible manner (Mukherjea et al., 2009). The

two models have conflicting limitations. If the extended lever
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Figure 1. Stepping Behavior of a Myosin-VI Head Labeled with

a Qdot

(A) Cartoon illustrating a Qdot labeled myosin VI head. The myosin VI head

(Menetrey, et al., PDB: 2BKI) was labeled at the N terminus via a HaloTag

domain (�5 nm). The catalytic domain, converter domain, calmodulin binding

(lever arm) domain, and two calmodulins are shown as red, green, black and

purple, respectively. A Qdot (�20 nm in diameter) was attached to the Halo-

tag via a biotin and streptavidin system. Image is not to scale.

(B) Time trajectory of steps by a myosin VI head labeled with a Qdot525. Steps

were observed at 20 mM ATP in assay buffer (20 mM HEPES-KOH, pH7.8,

25 mM KCl, 5 mMMgCl2, and 1 mM EGTA) plus an oxygen scavenger system

(Harada, et al., 1990). Qdot525 were visualized using custom made TIRFM

(Figure S1A).

(C) Time trajectory of steps at 20 mMATP and 100 mMADP in assay buffer plus

an oxygen scavenger system.

Experiments were done at room temperature (27�C).
arm is rigid, then the large stepsize can be explained but the

broad distribution of stepsizes cannot. In contrast, if the

unfolded three-helix bundle is relatively flexible, then the broad

distribution of stepsizes can be accounted for but the large

stepsizes over a wide range of loads are not (Altman et al., 2004).

Here, to further investigate myosin VI’s distinctive step

behavior, we observed myosin VI steps by monitoring quantum

dots (Qdots) and gold nanoparticles (GNPs) attached directly

to the motor domain, as these offer better spatial and temporal

resolutions during single molecule tracking compared to GFP

(Balci et al., 2005; Nishikawa et al., 2002; Yildiz et al., 2004).

Other groups have used organic fluorescent dyes like Cy3 or

Cy5, but attached them to calmodulin bound to an IQ motif,

i.e., the lever arm (Okten et al., 2004; Yildiz et al., 2004). Since

in these studies the IQ motif is at the distal end of the head, far

from the actin binding site, the relative position of the head to

the actin filament could not be ascertained. Along with modifying

the labeling molecule, we improved the spatial and temporal

resolutions of single molecule nanoimaging by using total

internal reflection fluorescence microscopy (TIRFM) and total

internal reflection dark field microscopy (TIRDFM). Using these

methods, we found two distinct stepsizes, one large (72 nm)

and one small (44 nm), and the existence of two tilt angles during

myosin-VI stepping. The large steps are consistent with the

previously reported hand-over-handmechanism, while the small

steps follow an inchworm-like mechanism and increase in

frequency with ADP. Switching between these two mechanisms

is likely to allow myosin VI to fulfill its multiple cellular tasks

including vesicle transport and membrane anchoring.

RESULTS

Large and Small Steps by Myosin-VI Heads
Myosin VI was labeled with Qdot 525 at its N terminus, which is

the location of the head (Figure 1A). We observed Qdots by

TIRFM (Funatsu et al., 1995; Tokunaga et al., 1997; Vale et al.,

1996) with some modification to achieve 2 nm spatial and 0.1 s

temporal resolutions (Experimental Procedures, Extended

Experimental Procedures, and Figure S1A available online, Yildiz

et al., 2003). Figures 1B and 1C show the time trajectories of

steps by single-labeled myosin VI heads in the presence of

ATP without and with ADP, respectively. The head underwent

mostly forward steps, although some backward steps were

observed. The forward step size had a large size distribution,

consistent with previous studies (Okten et al., 2004; Park et al.,

2006; Yildiz et al., 2004). However, within this large distribution

emerged the appearance of two distinct types of forward

steps, one small (44 nm) and one large (72 nm). Backward steps

of –42 nm were also seen. All step sizes were independent of

ATP concentrations ranging from 20 mM to 1 mM (Figures

2A–2D). The standard deviations of small forward, large forward

and backward step size distributions were ±7 nm, ±9 nm,

and ±7 nm, respectively, all of which are similar to those (±7 nm)

of Qdot labeled myosin V, a myosin that has a long, rigid lever

arm and takes large forward steps.

To exclude the possibility that steric hindrance generated

from the attached Qdot was responsible for the small steps,

we examined tetramethyl rhodamine (TMR) labeled myosin VI
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as a reference. The velocity and run length for Qdot labeled

myosin VI were consistent with those for TMR labeled myosin

VI (Table S1). Furthermore small (44 nm) steps were also

resolved for TMR labeled myosin VI at low ATP concentration

(Figure S2). These results indicate that steric hindrance due to

Qdot labeling at the head is not significant.

When 100 mM ADP was added to 20 mM ATP, the fraction of

small forward steps became the majority (Figure 1C and

Figure 2B). Such an effect by ADPwas also observed in the pres-

ence of high (1 mM) ATP, although to a lesser degree (Figures 2C

and 2D). Overall, the stepping frequency ratio for large and small

forward steps and small backward steps was 1: 0.4: 0.1 at 0 mM
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Figure 2. Stepsize Distribution of a Myosin-VI Head

(A) Histogram of stepsizes at 20 mM ATP. The histogram of stepsizes was best

fit to a three Gaussian function using a least-squaresmethod (solid and broken

lines) with peaks at 71.9 ± 8.9 nm, 43.6 ± 6.9 nm and –41.5 ± 7.0 nm. The

number of observed steps was 1256.

(B) Effect of ADP on steps at 20 mM ATP. The distribution of steps when the

ATP regenerating system was replaced with 100 mM ADP at 20 mM ATP. The

peak positions of a three Gaussian function fit were 73.9 ± 8.7 nm, 42.0 ±

8.6 nm and –43.8 ± 7.9 nm. The number of observed steps was 297.

(C) Histogram of steps at 1020 mM ATP. The histogram was best fit to a three

Gaussian function using a least-squares method (solid and broken lines) with

peaks at 75.3 ± 9.6 nm, 42.9 ± 8.6 nm and –40.5 ± 9.9 nm. The number of

observed steps was 762.

(D) Effect of ADP on the steps at 1020 mM ATP. The histogram shows the

distribution of steps when the concentration of ATP was 1020 mM and the

ATP regenerating system was replaced with 100 mM ADP. The peak

positions of the three Gaussian function fit were 73.4 ± 12.7 nm, 40.4 ± 6.7 nm

and - 47.9 ± 18.6 nm. The number of observed steps was 199.
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Figure 3. Dwell Time of Steps by a Myosin-VI Head

(A and B) Histograms of dwell times just before forward large (60–150 nm) and

small (0–60 nm) steps, respectively. The histograms were best fit by a convo-

lution of two exponentials (tk2 exp (-kt)), each having the same rate constant, k.

The value of k for large and small steps was 1.1 s-1 at 20 mM ATP.

(C) Histogram of dwell times just before backward steps. The histogram was

best fit by a single exponential with a rate constant of 1.5 s-1 at 20 mM ATP.
ADP and 20 mM ATP (Figure 2A), and 1: 1.5: 0.5 at 100 mM ADP

and 20 mM ATP (Figure 2B). Thus, the numbers of small forward

and backward steps that increased in response to ADP were

1.1 and 0.4, normalized by the number of forward large steps,

respectively. These results indicate that ADP had a pronounced

effect on the small forward step frequency and a slight one on the

backward step frequency. The slight increase in backward step

frequency can be explained as follows. ADP competes with ATP
for binding at the rear head, while at sufficiently high ADP/ATP

ratios, the relative rates of ATP binding to the rear and leading

heads become similar. ATP binding to the leading head

promotes detachment, which subsequently increases the prob-

ability of backward steps.

In order to investigate the stepping manner, the dwell times

of forward and backward steps by labeled heads were

analyzed. The histograms of dwell times just before the large

(60–150 nm) (Figure 3A) and small (0–60 nm) (Figure 3B) forward

steps were fit to a convolution of two exponentials (tk2 exp [-kt]),

each having the same rate constant, k. This is reasonable

if we assume that labeled and nonlabeled myosin VI heads alter-

nate steps, each corresponding to a single chemical cycle of

ATPase. The rate constant k changed with ATP concentration.

The ADP dissociation rate was 4.4 s-1, while the ATP association

rate was 0.037 mM-1s-1, both of which are consistent with

previous studies that failed to distinguish small and large steps,

meaning those observed values were likely averages of the two

(De La Cruz et al., 2001; Yildiz et al., 2004). Furthermore, these
Cell 142, 879–888, September 17, 2010 ª2010 Elsevier Inc. 881
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Figure 4. Simultaneous Observation of

Steps by Both Myosin-VI Heads

(A) Time trajectory of steps by two myosin VI

heads. The two heads were labeled with

Qdot525 (red) and Qdot585 (blue), respectively,

at 100 mM ATP. The positions of the Qdots are

plotted. Insertion, small steps on an expanded

time scale.

(B) Stepsizes by two heads. The histogram was

best fit to a three Gaussian function using a

least-squares method (red solid and broken lines)

with peaks of 75.6 ± 7.8 nm, 41.0 ± 10.2 nm

and � 39.6 ± 11.0 nm.

(C) The correlation between two successive steps

(n = 1075). Step size was measured using SHREC

observations, meaning all steps, not just those by

one head, were observed.

(D) Distances between the positions of the two

heads after steps were completed at 100 mM

ATP. The histogram was best fit to a four Gaussian

function using a least-squares method (solid

and broken red lines) with peaks at +34.3 ±

12.8, +9.9 ± 4.3, �34.5 ± 12.9, and �6.9 ±

5.8 nm. The number of observed steps was 1219.
results also demonstrate Qdot labeling created negligible steric

hindrance on myosin-VI motility.

On the other hand, the histogram of dwell times just before

backward steps by head-labeled myosin VI fits a single time

constant and matches the rate of forward steps at different

ATP concentrations (Figure 3C). This suggests that backward

steps are due to detachment of the leading head from actin by

ATP binding or spontaneous detachment of the leading head

without ATP binding.

Simultaneously Observing Two Myosin-VI Heads
Reveals Stepping Pattern of Large and Small Steps
Next, in order to clarify how the small and large steps are gener-

ated by the two myosin-VI heads, we traced steps by the two

heads simultaneously by monitoring differentially-labeled heads

with Qdots of different emission spectra using the SHREC

method (Churchman et al., 2005). Similar to our concerns above,

to exclude the possibility that double Qdot labeling disturbed

myosin VI motility, we compared its velocity and run length

with those of TMR labeled myosin VI (Table S1), finding them

to be the same.

Figure 4A shows the time trajectories of the head position.

Each head underwent forward (large, 76 ± 9 nm; small, 41 ±

12 nm) and backward steps (�40 ± 13 nm) (Figure 4B), similar

to the profile seen for single labeled heads (Figure 2A). The large

forward steps were processive and alternated between the two

heads, consistent with the hand-over-hand mechanism (Yildiz

et al., 2003). Small steps were also processive, but could not

be explained by the hand-over-hand mechanism. For these,

the trailing head first underwent a small forward step and bound

to the actin filament at a location immediately adjacent to the

leading head (Figure 4A, insertion). Then either head (mostly

the original leading head) underwent a small forward step. No

backward steps (out of 280 observations) were observed from

the adjacent head binding state. To clarify the correlation of

large, small and backward steps, we analyzed the relationship
882 Cell 142, 879–888, September 17, 2010 ª2010 Elsevier Inc.
of two successive steps. Figure 4C shows seven densities in

a correlation pattern (pattern I: successive 72 nm and 72 nm

steps; pattern II: 72 nm and 44 nm steps; pattern III: 44 nm

and 72 nm steps; pattern IV: 44 nm and 44 nm steps; pattern V:

72 nm and �44 nm steps; pattern VI: 44 nm and �44 nm steps;

and pattern VII: �44 nm and 44 nm steps). A striking feature in

this figure is that there is no density for successive backward

steps; backward steps are always followed by small forward

steps.

Figure 4D shows a histogram of distances between the two

heads after a step was completed. Distance represents the

distance between the original leading head and original trailing

head such that when the original trailing head leads, distance

is negative. The histogram fit to a four Gaussian function with

peaks of +35, +10,�7 and�34 nm. The +35 and�34 nm values

are consistent with the heads spanning the actin half helical pitch

(36 nm), while in myosin V, only a 36 nm distance between the

two heads was reported using Qdot labeled myosin V (Warshaw

et al., 2005). The +10 and �7 nm values are consistent with the

heads being adjacent to each other (adjacent head binding

state). The fraction of adjacent head binding state increased in

the presence of ADP (data not shown). The feature deduced

from the histogram fit to a four Gaussian function is inconsistent

with a simplified hand-over-hand model deduced from a histo-

gram fit to a single Gaussian function (Balci et al., 2005). One

possible explanation for the disagreeing results is the labels

used to determine distance. In the Balci report, eGFP was

used. We, however, labeled with Qdot, which is much brighter

than eGFP and therefore may explain why we saw two peaks

in the two heads distance distribution.

Furthermore, we analyzed the step size distribution after

heads took the adjacent binding state (heads separated by

less than 15 nm; Figure S4A) and that after taking the distant

binding state (heads separated by over 30 nm; Figure S4B).

Myosin VI produced only small forward steps (45 nm) after the

adjacent binding state (Figure S4A), but took large (75 nm), small
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Figure 5. Microsecond NanoImaging of Steps of a GNP-Labeled

Myosin-VI Head

(A) Time trajectory of steps by a myosin VI head labeled with a gold nanopar-

ticle (GNP) at 2 mM ATP. Light scattered by GNP was detected with modified

dark field microscopy (Figure S1B).

(B) Large and small steps on an expanded time scale reveal an intermediate

that corresponds to a one-head bound state. The intermediate breaks the

step into two substeps.

(C) Histograms of the 1st and 2nd substep size, respectively. The histogram of

the 1st substep size was fit to a two Gaussian function with peaks at 23.8 ± 8.8

and 55.4 ± 14.6 nm, while that of the second substep was fit to a single

Gaussian function with a peak at 20.1 ± 12.3 nm. The number of observed

steps was 128.
(40 nm) and backward (�43 nm) steps at a 1:0.2:0.3 ratio after

the distant binding state (Figure S4B).

First Substep before Brownian Search Regulates
Myosin-VI Step Size
It hasbeen reported thatmyosin-V stepping is determined largely

by a deterministic power stroke with a minor contribution from

a diffusive search. This is thought to explain myosin V’s narrow

stepsizedistribution. Analogously,myosin-VI stepping is thought

to have a much larger diffusive search component because of its

short lever arm and broad step size distribution (Ali et al., 2004;

Altman et al., 2004; Lan and Sun, 2006; Okten et al., 2004;

Rock et al., 2005; Sun et al., 2007). Dunn and Spudich shed light

on this matter for myosin V by achieving a temporal resolution of

320 ms (3125 frames/s) using dark field imaging and gold nano-

particles (GNPs), which allowed them to report an elusive inter-

mediate state (Dunn and Spudich, 2007). This state describes

how the unbound head freely diffuses and searches for the

forward binding site (Brownian search) (Dunn and Spudich,

2007; Shiroguchi and Kinosita, 2007). Thus, to understand the

role of the Brownian search mechanism, we constructed TIR

(total internal reflection) based dark-field illumination geometry

by using a perforated mirror and a complementary metal oxide

semiconductor (Ueno et al., 2010) (Experimental Procedures,

Extended Experimental Procedures, and Figure S1B). This

enabled us to observe GNPs of 40 nm in diameter with a spatio-

temporal resolution of 2 nm and 37 ms (27,000 frames/s; roll-off

time = 0.4ms). The velocity and run length for 40 nmGNP labeled

myosin VI were similar to those for TMR labeled myosin VI

(Table S1), indicating no significant steric hindrance by the GNP.

Figure 5A shows the time trajectory of movement by such

a single myosin VI head. Observed steps were similar to those

observed by Qdot labeled myosin. Furthermore, we observed

large fluctuations for 30 ms before the plateaus (Figure S3), of

which the SD was 2-fold greater than that after the plateaus.

These large fluctuations are likely due to Brownian motion by

the trailing head when detached from actin. Within each step,

there existed two substeps (Figure 5B), the distributions of which

are shown in Figure 5C. The first substep had two peaks at 24 nm

and 55 nm, while the second substep had only a single peak at

20 nm. To see if the second substep immediately following

a small first substep and that following a large first substep are

different, we separated them into two groups (second substep

following a first substep that was less than 35.5 nm and a first

substep larger than 35.5 nm). However, the difference between

the two (20 ± 18 nm and 17 ± 15 nm; mean ± SD) was within

the deviations and so could not be distinguished. The results

indicate that the small (44 nm) step consisted of a 24 nm substep

followed by a 20 nm substep, whereas the large (75 nm) step

consisted of a 55 nm substep followed by a 20 nm step. Thus,

the large and small myosin-VI steps are regulated by the mean

position of the first substep.

The Unexpectedly Long and Relatively Rigid Myosin-VI
Lever Arms Are Responsible for the Unexpected Large
Step
We used these values to speculate the position of the lever arm

junction of the leading head while bound to actin. Given that the
distance between myosin VI heads just before a step is 36 nm,

the lever arm junction should be 19 nm (= 55 nm � 36 nm; see

Figures 6A and 6B and ‘‘Model for Forward Steps,’’ shown

below) anterior to the leading head while bound to actin for

a long step, but 12 nm (= 36–24 nm; see Figures 6A0 and 6B0)
and ‘‘Model for Forward Steps,’’ shown below) posterior for a

short step. Thus, the effective lever arm length (19 and 12 nm)

is much larger than that (�6 nm) expected from a lever arm

consisting of two calmodulin binding domains, 180 degree tilt

angle which set the lever arm to be parallel to the actin filament

both before and after tilting (Bryant et al., 2007). This then

strongly suggests the existence of an unexpected long and rela-

tively rigid lever arm.
Cell 142, 879–888, September 17, 2010 ª2010 Elsevier Inc. 883
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Left, large hand-over-hand steps; middle and right, small inchworm-like steps. Colors denote the following: N-terminal motor domain (red), the converter domain

(green), the lever arm (two calmodulins, purple), the lever arm extension (blue) and the tail domain (black). Green and blue arrows indicate positions of the lever

arm junction for large and small steps, respectively. Red arrows indicate the position of the trailing head from the lever arm junction of the leading head when it is

bound to actin. The orientations of the lever arms of the two heads in (A) and (A0) are in agreement with a recent report (Mukherjea et al., 2009). In order to explain

the effective lever arm lengths, which are 19 and 12 nm for large steps and small steps, respectively, we assume that the position of basal end of the lever arm

(green sphere) deviates 3.5 nm toward the pointed end (forward direction) relative to the central axis of the myosin head. This means the lever arm length is

15.5 nm and the 19 and 12 nm effective lever arm lengths are given as 15.5 nm + 3.5 nm and 15.5 � 3.5 nm, respectively. The difference in effective lever

arm lengths may be also in part due to the lever arm’s flexibility (Spink et al., 2008). See text for details.
We also analyzed the backward step at a high sampling rate,

discovering that a backward step also consists of a first substep

(�20 nm) and a second substep (�22 nm) (Figure S5). We

observed only a single peaked first substep. Therefore, long

backward steps of �72 nm are likely prohibited by the mean

position of first substep, which is determined by the direction

of the lever arm (see ‘‘Model for Backward Steps’’).

DISCUSSION

Numerous single molecule assays have contributed to clarifying

the myosin-VI stepping mechanism. This has lead to a prevailing

model in which myosin VI moves along an actin filament in

a hand-over-hand fashion with a large step size in a manner

similar to myosin V, another processive myosin (Nishikawa

et al., 2002; Okten et al., 2004; Rock et al., 2001; Yildiz et al.,

2004). However, the state of the lever arm during such move-

ment remains controversial. Spink et al. and Sivaramakrishnan

and Spudich have proposed that myosin VI extends its lever

arm such that it is relatively rigid (Spink et al., 2008 and Sivara-

makrishnan and Spudich 2009), whereas Mukherjea et al.

suggest this extension leads to a flexible lever arm (Mukherjea

et al., 2009). This is an important issue to resolve for explaining

how myosin VI generates much larger and more broadly-distrib-

uted stepsizes than expected. Here, we conducted nanoimaging

ofmyosin VI steps bymonitoring attachedQdots by using FIONA

(Yildiz et al., 2003) and SHREC (Churchman et al., 2005) and

attached nanogold particles by using TIR dark field microscopy.

The results revealed that the large steps were caused by
884 Cell 142, 879–888, September 17, 2010 ª2010 Elsevier Inc.
extended lever arms and the broadly-distributed stepsize was

due to a mixture of large and small steps of narrow distributions.

This led us to propose a model that considers both the hand-

over-hand and inchworm models to describe how myosin VI

generates and switches its steps, and how this facilitates myosin

VI to performing its physiological functions (see below).

Model for Switching between Forward Large and Small
Steps
We propose a model for myosin-VI step movement in Figure 6.

Forward large steps are described in Figures 6A–6C by a

hand-over-hand mechanism: (Figure 6A) both heads first span

the actin half helical pitch 36 nm apart; (Figure 6B) the trailing

head unbinds from actin upon ATP binding, moves forward

55 nm when the leading head tilts its lever arm, and undergoes

Brownian motion; and (Figure 6C) finally binds to the forward

actin target 20 nm ahead.

Small forward (44 nm) steps are shown in Figures 6A0–6C0 and
6D0–6F0 in accordance with an inchworm-like mechanism:

(Figure 6A0) both heads span the actin half helical pitch 36 nm

apart; (Figure 6B0) the trailing head unbinds from actin upon

ATP binding, moves forward 24 nm when the lever arm of the

leading head remains unchanged, and undergoes Brownian

motion; and (Figure 6C0) finally attaches to the forward actin

target 20 nm ahead of the leading head. Following this small

step, one of the two heads then constitutively undergoes a small

forward step (Figures 6D0–6F0) to return to state (Figure 6A0).
During the (Figure 6C0) to (Figure 6D0) process, two lever arms

should move to the forward direction, although this was not
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Figure 7. Model for Backward Steps

Colors denote the following: N-terminal motor

domain (red), the converter domain (green), the

lever arm (two calmodulins, purple), the lever arm

extension (blue) and the tail domain (black). Green

arrows indicate movement of the detached head

during backward steps. Three possible backward

step patterns are shown. No backward steps

take place in the manner described in either (A)

or (B). Backward steps are made by the leading

head only when both heads span the actin half

helical pitch (36 nm) (C). In Fig. 6, processes (D0)
through (F0) occur after Figure 7C to produce the

subsequent small step.
directly observed in our measurements. Here, we observed

a 36 nm distance between the two heads followed by the rear

head taking a small forward step. This is consistent with the inch-

worm model. However, the small forward step was 44 nm

(Figure 2A), suggesting the rear head becomes the lead head,

whereas in the inchworm model the rear head is always rear.

We, therefore, describe our observations by an inchworm-like

model (Figure 6C0).
The frequency of small steps was enhanced by adding 100 mM

ADP to either 20 mM or 1020 mM ATP (Figures 2B and 2D). This

suggests that ADP binding to the leading head switches the

orientation of its lever arm from forward to backward pointing

in order to generate small steps. Since ADP affinity for myosin

VI increases with backward force (Altman et al., 2004), the back-

ward force is expected to regulate the lever arm orientation of

the leading head by modulating ADP binding. The lever arm of

the leading head points backward due to the intramolecular

strain generated when both heads bind to actin (Figure 6A and

Figure 6A0) (Reifenberger et al., 2009). Tilting of the lever arm

follows detachment of the trailing head in response to ATP

binding (Figure 6B and Figure 6B0).
A crystal structure argues that myosin VI takes its post-power

stroke state in the ADP binding state (Menetrey et al., 2008).

Although initially this appears to challenge our assumption that

ADP binding stabilizes the pre-power stroke state, it is important

to emphasize that we also assume that the myosin VI-ADP state

described in Figure 6B0 and Figure 6C0) is an intermediate state

(M0-ADP), similar to the pre-powerstroke state formed just after

Pi releases from myosin II in muscle (Goldman, 1987). This is in

contrast to the myosinVI-ADP complex crystal structure, which

corresponds to the post-powerstroke state (M-ADP).

Overall, our model argues that 1) the tail domain acts as a long

and relatively rigid extended lever arm and 2) when the trailing

head detaches from actin, the leading head has two conforma-

tions in which the lever arm either points forward (tilts), which

corresponds to the post-power stroke state, or backward (no

tilt), which corresponds to the prepower stroke state. When

pointing forward, the trailing head undergoes a large (72 nm)

forward step; when pointing backward, the trailing head takes

a small (44 nm) forward step. The first point accounts for the

large myosin VI step size over a wide range of loads, while the

second accounts for the wide distribution of step sizes, which

is actually due to two different step types.
Model for Backward Steps
Figure 7 shows three possible explanations for backward

steps according to myosin-VI structural information. The large

backsteps described in Figure 7A are unlikely because we only

observed –42 nm steps (Figure 2A and Figure 4C). The small

backsteps described in Figure 7B are also unlikely because

SHREC measurements found no backsteps from the adjacent

head binding state out of 280 observations. All observed back-

ward steps (155 steps) by SHREC measurements were small

and took place only when both heads span the actin half helical

(36 nm) (Figure 7C). Since the first substep of a backward step

was -20 nm (Figure S5), the lever arm of the trailing head should

be directed to the forward direction during backward step gener-

ation (Figure 7C). This would prevent �72 nm large backward

steps.

Physiological Significance of Switching
Why is switching between large hand-over-hand and small inch-

worm-like steps important for cellular processes? The large step

mechanism is advantageous for transporting vesicles fast and

smoothly at low loads. On the other hand, although the small

forward and backward steps may constrain effective vesicle

transport, they may offer versatility when avoiding obstacles

and searching for the correct actin binding sites in a trial and

error manner in the crowded cytoskeleton meshwork of a cell

(Sivaramakrishnan and Spudich, 2009; Spudich and Sivaramak-

rishnan, 2010). Furthermore, the adjacent head binding state

should be useful for anchoring vesicles or the cell membrane

to actin cytoskeletons because any external strain is equally par-

titioned between the two heads meaning myosin VI can maxi-

mize its stall force, which allows it to resist a higher force along

the filaments. This is further affirmed by the fact that no consec-

utive small backward steps were observed. Based on the

stepping frequency, we can estimate the force by the adjacent

head binding state against backward load. The theoretical

energy difference, du, before and after the backward steps

from the ratio of forward and backward steps, Nf/Nb, where Nf

indicates the number of small forward steps after the adjacent

head binding state and Nb indicates the number of backward

steps after the adjacent head binding state, can also be deter-

mined. No backward steps were observed (out of 280 observa-

tions), i.e., Nb = 0. When Nb = 0, Nf/Nb cannot be calculated.

So we assumed Nb = 1 instead, such that Nf/Nb = 280/1 giving
Cell 142, 879–888, September 17, 2010 ª2010 Elsevier Inc. 885



du = kTln280 = 5.6kT = �23 nm$pN. Noting that F = du/d, where

F is force and d is the characteristic distance (Taniguchi et al.,

2005), and assuming d = 44 nm, which approximates a small

step, F = �23 nm pN/44 nm = 0.52 pN. In reality, Nf/Nb and

F are larger since Nb < 1 and d < 44 nm. These results mean

that the adjacent head binding state can withstand a backward

load > 0.52 pN, which suggests this state is ideal when anchoring

vesicles inside the cell. Thus, the adjacent head binding state

is robust against a backward force. By combining the hand-

over-hand and inchworm-like mechanisms, myosin VI should

more ably adjust to different environmental conditions, which

would then make it more capable of completing its multitude of

functions.

EXPERIMENTAL PROCEDURES

Constructs Design and Protein Preparations

To construct myosin VI heavy chain, the Human Myosin VI heavy chain cDNA

(Kazusa product ID: KIAA0389) 30 end from 3064-3856 bp was deleted to

obtain a Myosin VI cDNA fragment that encoded amino acids Met1-Ala1021.

This fragment included the motor domain, neck domain, and coiled-coil

domain. To ensure myosin VI dimerization, chicken gizzard smooth muscle

myosin tail gene (3327–4692 bp) encoding Thr1109-Ala1564 was obtained

from full length cDNA (Accession number X06546: gift from Dr. Ikebe) and

added downstream and in frame with the 30 end of the myosin VI coding

sequence via a single alanine. For effective biotin labeling and purification,

HaloTag� (DHA, Promega) fragment via a LRRRPTRPAMDPPSK linker and

6 3 His-tag fragment were attached at the 50 end and 30 end, respectively.
For the calmodulin (CaM) construct, the Human CaM coding sequence

(Kazusa product ID: ORK11793) was inserted into the pFastBac1 between

the BamHI and Hind III sites.

Recombinant viruses for myosin VI heavy chain and CaM were produced by

homologous recombination using the Bac-to-Bac Baculovirus Expression

System (Invitrogen) into Sf9 cells. After co-infection and incubation for 60 hr,

cells were harvested by centrifugation at 6000 3 g for 5 min and stored

at �80�C.
Frozen cells were suspended and sonicated in 10 mL/g wet cells of lysis

solution (20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 0.2 mM EGTA, 5 mM

MgCl2, 5 mM ATP, and 10 mM b-mercaptethanol) containing Complete

EDTA-Free Protease Inhibitors (Roche Diagnostics). After ultra centrifugation

at 10,000 3 g for 20 min, soluble fractions were mixed with nickel-charged

resin (HIS-Select TM Nickel Affinity Gel, SIGMA) for 1 hr. After the removal of

unbound protein, 1 ml of lysis solution and 5 ml of HaloTag PEG-Biotin Ligand

(Promega) were added to the resin and incubated at 27�C for 30 min for

N terminus biotinylation. Afterward, wash solution (20 mM Tris-HCl, [pH 8.0],

300 mM NaCl, 0.2 mM EGTA, 2 mMMgCl2, 0.2 mM ATP, 10 mM b-mercapte-

thanol, and 20 mM Imidazole) was added to remove any unreacted reagents.

The biotinylated myosin VI was eluted with eluting solution (20 mM Tris-HCl,

[pH 8.0], 300 mM NaCl, 0.2 mM EGTA, 2 mM MgCl2, 0.2 mM ATP, 10 mM

b-mercaptethanol, and 150 mM Imidazole). Thus, myosin VI was biotinylated

at the HaloTag domain attached to the N terminus of its head. Biotinylation

was confirmed by using a streptavidin-alkaline phosphatase conjugate and

bromochroloindolyl phosphate / nitro blue tetrazolium (BCIP/NBT) as the

substrate. All steps were performed at less than 4�C except for the biotinyla-

tion reaction.

Myosin-Qdot Conjugation

Qdot525 streptavidin conjugates (Invitrogen) and biotinylated myosin VI were

mixed and incubated prior to use for single label experiments and together

overnight on ice for double label experiments at a ratio of 1 to 1. Assay buffer

(AB; 20mMHEPES-KOH, [pH 7.8], 25 mMKCl, 5 mMMgCl2, and 1mMEGTA)

was prepared before each experiment. 1 ml Qdot-Myosin VI mixture was

diluted 100 3 in motility buffer (MB; AB plus an oxygen scavenger system

(Harada et al., 1990), ATP regeneration system (Iwaki et al., 2009) and different

nucleotide concentrations).
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Myosin-Gold Nanoparticle Conjugation

40 nm diameter gold nanoparticles (GNPs, British BioCell International) were

resuspended in 30 ml of 2 mM HEPES-KOH, pH 7.8 at a final concentration

of 0.9 nM and 2 mg/mL Neutravidin (Invitrogen) and incubated overnight at

4�C. Excess Neutravidin was removed twice by centrifugation at 7400 3 g

for 2 min in 2 mM HEPES-KOH, (pH 7.8).

Biotinylated myosin VI (�1 mM) was then added to the Neutravidin

conjugated GNPs (�0.1 mM) at mixture ratios ranging from 1:1 to 1:10.

0.1% nitrocellulose in n-amyl acetate was added to the flow cell and immedi-

ately removed in order to make a thin layer on the coverslip surface. 10 ml

a-actinin (1.5 mg/mL in AB) was then added and incubated for 3 min to

allow for tight adsorption. Unbound a-actinin was removed by washing with

50 ml AB.

Actin stock was diluted 25 3 in AB to 0.4 mg/mL. 10 ml of which was added

and incubated for 3 min to allow for tight adsorption. Excess actin was

removed by washing with 50 ml AB. The cell was then incubated with 10 ml

5 mg/mL a-casein for 3 min to reduce particle adhesion. Excess a-casein

was removed by washing with 50 ml AB. 30 ml MB was then added. Finally,

1 ml GNP conjugated myosin VI solution was diluted 10 3 in MB and then

added into the flow cell and sealed with nail polish.

Microscopy and Image Analyses

Qdot conjugated myosin VI movement was imaged using total internal reflec-

tion fluorescence microscopy (TIRFM) and an Olympus IX71 epifluorescence

microscope (Figure S1A). Illumination was provided by a 405 nm laser light

(Coherent, Compass405-50CW). The illumination laser was rotated by a Tip-

tilt piezo mirror (Physik Instrumente, S-334.2SL) at 30 Hz along the periphery

of the objective lens to make an omnidirectional evanescent field in order to

prevent interference. The fluorescent photons were collected with a back-illu-

minated EMCCD camera (Andor, DV887ECS-BV). In the case of the double

label experiments, a dual-view apparatus (1 3 magnification, Hamamatsu)

equipped with dichroic mirrors (DML557 nm, Asahi Spectra) and emission

filters (FF01-520/35-25 and FF01-593/40-25, Semrock) was put in front of

the camera (Kinosita et al., 1991).

GNP conjugated myosin VI movement was imaged using total internal

reflection based dark field microscopy (TIRDFM) (Figure S1B). Illumination

was provided by 532 nm laser light (Coherent, Compass 415M). The scattered

photons from the GNPs were passed through the center of a perforated mirror

and tube lens (Olympus), externally magnified by a TV adaptor (VM2.53,

Nikon) and detected by a high-speed CMOS camera (Photron, FASTCAM-

1024PCI).

Image acquisition was performed by commercial software (Andor, SOLIS

software). Exported 8 bit data were imported into a custom written program

using LabVIEW (National instruments). The spot center for each frame

was determined using a double Gaussian fit according to a published

method (Thompson et al., 2002; Yildiz et al., 2003, 2004). Accuracy of the

spot center detection was 2.0 nm. Images of double labeled myosin were

obtained and analyzed in accordance with SHREC (Churchman et al., 2005;

Churchman and Spudich, 2007). The fiducial registration error (FRE), which

evaluates the accuracy of the control grid function and was used to detect

the relative position of the two Qdots (Churchman et al., 2005; Churchman

and Spudich, 2007), was 6.3 ± 1.0 nm. To evaluate the stability of the control

grid during measurements, we recalculated FRE using the same grid

function after two hours, finding no significant change (6.2 ± 0.8 nm), which

indicates that the control grid function was sufficiently stable for myosin VI

measurements.

For details of the sample preparations for Myosin-Qdot conjugation and

Myosin-gold nanoparticle conjugation, microscopy and image analysis,

please see Supplemental Experimental procedures.

Finally, all steps were detected by eye.
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