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SUMMARY

Due to a unique addition to the lever arm-posi-
tioning region (converter), class VI myosins
move in the opposite direction (toward the mi-
nus-end of actin filaments) compared to other
characterized myosin classes. However, the
large size of the myosin VI lever arm swing
(powerstroke) cannot be explained by our cur-
rent view of the structural transitions that occur
within the myosin motor. We have solved the
crystal structure of a fragment of the myosin
VI motor in the structural state that represents
the starting point for movement on actin; the
pre-powerstroke state. Unexpectedly, the con-
verter itself rearranges to achieve a conforma-
tion that has not been seen for other myosins.
This results in a much larger powerstroke than
is achievable without the converter rearrange-
ment. Moreover, it provides a new mechanism
that could be exploited to increase the power-
stroke of yet to be characterized plus-end-di-
rected myosin classes.

INTRODUCTION

Within the myosin superfamily there are at least 20 classes

of molecular motors that move along actin filaments (Berg

et al., 2001). Myosin motor activity is initiated by binding to

actin in a state known as the pre-powerstroke state, in

which the ATP hydrolysis products are trapped. Actin

binding drives conformational changes that allow sequen-

tial release of Pi and MgADP, and is coupled to movement

of the myosin ‘‘lever arm.’’ The lever arm is a variable

length, extended alpha-helix containing calmodulin (CaM)

and/or CaM-like light chain binding sites (IQ motifs). It is

attached to a subdomain of the myosin motor known as

the converter. The converter itself is thought to rotate as

a rigid body, rectifying and amplifying the structural

changes within the motor domain. The final position

of the lever arm at the end of the powerstroke is reached

in the actin-myosin rigor conformation, which is formed
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following the release of ADP. Thus the magnitude of the

myosin powerstroke, often referred to as the stroke size,

is determined by the net displacement at the end of the le-

ver arm from its pre-powerstroke position to its rigor posi-

tion. This structure-based explanation of myosin motor

activity is referred to as the swinging lever arm hypothesis

(Holmes and Geeves, 2000; Holmes et al., 2004) and is il-

lustrated in Figure 1A.

Myosin VI is the only class of myosin that has been

shown to move toward the minus-end of actin filaments

(Wells et al., 1999). The myosin VI dimer is capable of

processive movement (i.e., can move as a single mole-

cule) along an actin filament (Park et al., 2006) as well as

load dependent anchoring (Altman et al., 2004), and thus

can fulfill a number of specialized cell biological functions

(Buss et al., 2004; Frank et al., 2004; Sweeney and Hou-

dusse, 2007). Underlying its unusual properties are two

unique structural inserts within the myosin VI motor. The

first of these, insert 1, is near the nucleotide-binding site

and is responsible for gating of the myosin VI heads during

processive movement, and likely is necessary for anchor-

ing under high loads (Sweeney et al., 2007). The second

insert, insert 2, is a structural extension of the converter

subdomain and repositions the myosin VI lever arm (Mé-

nétrey et al., 2005). The first part (proximal helix) of insert

2 interacts with the converter, whereas the second part

binds Ca2+-calmodulin. Insert 2 is solely responsible for

the reversal of myosin VI directionality, as its removal

causes myosin VI to become a plus-end directed motor

on actin (Park et al., 2007; Bryant et al., 2007).

The structure of a truncated myosin VI with its CaM-

containing lever arm (MD-IQ) in a rigor-like state (a state

similar in motor conformation to that believed to exist in

the actin-myosin rigor complex) revealed the need for ad-

ditional adaptations in the myosin VI structure to account

for the observed movements of the motor (Ménétrey et al.,

2005). The problem is that based on the rigor-like confor-

mation of the myosin VI motor at the end of the power-

stroke, and modeling of a pre-powerstroke converter

positioning based on myosin I or myosin II structures,

the predicted stroke size of the myosin VI MD-IQ would

be �2.5 nm (Figure 1B and Figure S1 in the Supplemental

Data available with this article online). However, the stroke

size measured in an optical trap is 11–12 nm (Rock et al.,
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Figure 1. The Swinging Lever Arm Hypothesis and the

Problem Posed by Myosin VI

(A) The top panel illustrates the powerstroke of a (+) end-directed my-

osin, based on structures of scallop myosin II (Houdusse et al., 2000;

Yang et al., 2007). From the pre-powerstroke (PPS) and rigor struc-

tures, a stroke of 7 nm is predicted for a construct truncated after

one light chain/calmodulin-binding site (IQ motif). This corresponds

to what has been measured for a truncated myosin V construct with

one IQ motif (Purcell et al., 2002). Note that if the lever arm were

made longer, as in the case of myosin V, the measured powerstroke

(stroke size) would increase (Purcell et al., 2002).

(B) This hypothetical model of the myosin VI powerstroke was gener-

ated using the same converter rotation and conformation for myosin

VI as that found for plus-end motors, while maintaining the interactions

found in rigor between the myosin VI converter and insert 2. Note that

the lever arm is predicted to be oriented toward the actin filament, and

a stroke of only 2.5 nm is predicted.

(C) To generate the 11–12 nm measured stroke size for myosin VI, the

orientation of the converter in the pre-powerstroke state must greatly
2005), which would necessitate the lever arm movement

depicted in Figure 1C. Furthermore, for optimal movement

the lever arm swing of myosins should be roughly parallel

to the actin filament, which would require a very different

position for the lever arm in the pre-powerstroke confor-

mation of myosin VI than would be predicted. In order to

account for the observed stroke size of myosin VI, we

noted that the lever arm would need to be positioned ap-

proximately 180� from its rigor position when in the pre-

powerstroke state (Ménétrey et al., 2005 and schematized

in Figure 1C), which was also the conclusion based on

stroke size measurements involving a series of truncations

of the myosin VI lever arm and insert 2 (Bryant et al., 2007).

Additionally, earlier studies of full-length monomeric myo-

sin VI led to the conclusion that the rotation of the lever

arm would have to be at least 140� to explain the observed

stroke size (Lister et al., 2004).

We offered two types of models that could account for

this discrepancy (Ménétrey et al., 2005). The first involved

an uncoupling of the lever arm in the pre-powerstroke

state, and the second called for a unique pre-powerstroke

structure. Later experiments ruled out the former and sug-

gested that myosin VI must indeed adopt a different con-

formation at the beginning of its powerstroke on actin

(Park et al., 2007; Bryant et al., 2007). Using a truncation

of the myosin VI motor in which the CaM-binding region

of insert 2 was removed, we have now solved the pre-

powerstroke structure of the myosin VI motor (Figure 2).

This structure reveals a number of previously unseen

structural adaptations that create a unique pre-power-

stroke state and explain the large stroke size observed

for myosin VI. Furthermore it demonstrates that one as-

sumption of the swinging lever arm hypothesis, that the

converter subdomain of the motor always rotates as a rigid

structure, is not correct for all classes of myosin.

RESULTS

Design of the Construct
The pre-powerstroke structures of myosin II and myosin I

isoforms have been solved with MgADP and phosphate

analogs (either AlF4 or vanadate) trapped at the nucleo-

tide-binding site of the protein (Fisher et al., 1995; Smith

and Rayment, 1996; Dominguez et al., 1998; Houdusse

et al., 2000; Kollmar et al., 2002). We were unsuccessful

in attempts to crystallize these trapped forms of our previ-

ously published truncations (MD-IQ and MDinsert 2) of

myosin VI (Ménétrey et al., 2005), so we further truncated

the motor (after isoleucine 789), removing the calmodulin-

binding site of insert 2, creating a motor domain (MD)

construct.

The function of this myosin VI MD construct was

assessed by actin-activated ATPase activity at 25�C. The

maximal steady state activity was slightly reduced as

differ from that of plus-end motors. Note in particular how the orienta-

tion of the proximal helix of insert 2 (white cylinder with purple con-

tours) differs from the predicted model (B).
Cell 131, 300–308, October 19, 2007 ª2007 Elsevier Inc. 301



compared to MD-IQ (4.6 ± 0.3 s�1 and 5.7 ± 0.4 s�1, re-

spectively), with no change in the apparent actin affinity

(KATPase). This was due to a 20% slowing of ADP release

in the truncated construct (4 s�1 versus 5 s�1). However,

truncation clearly did not interfere with the ability of the

motor to go through its ATPase cycle on actin. Further-

more, a similarly truncated construct (after serine 791)

has previously been shown to have motor activity using

a gliding actin filament assay, and also was shown to

have decreased ADP release kinetics (Bryant et al., 2007).

Figure 2. The Myosin VI Pre-Powerstroke Structure Reveals
that a Converter Rearrangement Increases the Size of the

Powerstroke

The structure of the myosin VI motor domain prior to force generation

(pre-powerstroke [PPS]) is compared to that at the end of the power-

stroke (rigor-like state). Note the drastic change in the converter

(green) position and in the insert 2 proximal helix (purple) orientation.

Possible positions of the full lever arm in the pre-powerstroke state

are indicated by the red and black dotted lines. The black dotted

line indicates that the kink observed in the insert 2 helix in the rigor-

like state (below) is maintained in the pre-powerstroke state. The

red dotted line indicates the lever arm position if there is no kink in

the insert 2 helix in the pre-powerstroke state. This introduces ap-

proximately a 40� uncertainty in the lever arm position in the pre-

powerstroke state.
302 Cell 131, 300–308, October 19, 2007 ª2007 Elsevier Inc.
A Unique Pre-Powerstroke State Increases
the Myosin VI Stroke Size
The myosin VI MD construct crystallized in a state with

MgADP.vanadate trapped in the nucleotide-binding

pocket. The crystals diffracted up to 1.75Å, allowing de-

termination of the myosin VI pre-powerstroke structure

at high resolution. As shown in Figure 2, this myosin VI

pre-powerstroke structure would position the lever arm

greater than 140� from the previously seen rigor-like posi-

tion, as compared to the 70� rotation seen for myosin II

(Houdusse et al., 2000). While the exact lever arm position

cannot be determined from this truncated structure, the

dotted lines in Figure 2 delineate a range of possible posi-

tions. Even with the smallest rotation (red dotted line), the

stroke size is clearly much larger than that predicted by

previously seen rearrangements in myosin pre-power-

stroke structures (see Figure 1B). This is despite the fact

that, as shown in Figure S2, the majority of the motor is po-

sitioned as in the myosin II pre-powerstroke structures.

The exceptions involve the elements that position the con-

verter (known as the relay and SH1 helix) and the converter

itself, which is in a previously unseen conformation (Fig-

ures 3 and 4).

Figure 3. The Myosin VI Converter Is Less ‘‘Primed’’ in the

Pre-Powerstroke State

(A) The pre-powerstroke state of myosin VI (color) is compared to

that of Dictyostelium myosin II (black), with the Lower 50 kDa sub-

domains superimposed. The structures are oriented relative to

a horizontal actin filament (black arrow). Note the difference in

the relay (yellow) conformation, which is less bent in myosin VI.

This results in a 10� difference in the orientation of the converter

(green for myosin VI with L753 indicated as a green ball, the equiv-

alent residue I741 in Dictyostelium is indicated as a black ball).

Thus, the converter of myosin VI is less ‘‘primed’’ than that of

plus-end motors.

(B) Sequence differences at three critical locations in the relay result in

the reduction in the myosin converter rotation. Less bulky side chains

are found at the beginning of the relay near the helix bend (L489 in my-

osin VI, F484 in myosin II) and at the relay tip (V503 in myosin VI, W501

in myosin II). Also a one-residue deletion is found at the end of the re-

lay (Y508 in myosin VI, F506-G507 in myosin II). All of these sequence

differences contribute to diminishing the steric clash between the relay

and the SH1 helix in myosin VI. Thus the relay is not forced to bend as

much in myosin VI and the relay main chain is found closer to the SH1

helix than in myosin II.



Figure 4. A New Conformation of the Converter Reorients Insert 2 in the Pre-Powerstroke State
(A) The rigor conformation of the converter (left) is compared to that of the pre-powerstroke state (right). In the two structures, the beta sheet is found in

a similar orientation and the interactions with the relay and the SH1 helix are mostly conserved. In contrast, four hinges (black) drastically change

conformation and reorient the helices of the converter as well as the insert 2 proximal helix (purple). The helix-loop-helix motif (light green) found be-

tween the first and the second hinges moves as a rigid body. Note in particular how a drastic conformational change in the third hinge reorients the last

helix of the converter (aCter). Three hydrophobic side chains (orange) buried within the converter in the rigor conformation are repositioned toward the

surface of the molecule in the pre-powerstroke state. Note also that the SH1 helix unwinds at its C terminus (Gly703-Gly704) in the pre-powerstroke

state (shown as orange balls).

(B) An important change in the conformation of the last hinge (residues 771–773) allow the orientation of the proximal helix of insert 2 to differ by�90�

(relative to the aCter helix) between the pre-powerstroke state (color) and the rigor state (gray).

(C) Comparison of the docking site of the insert 2 proximal helix (purple) in the two converter conformations. The same surface of this helix (L777-

V780-V784-N785) interacts very differently in the two structures, mainly with the helix-loop-helix motif (light green) of the converter.
An Altered Conformation of the Relay Repositions
the Converter
It is clear that ‘‘priming’’ of the lever arm at the beginning of

the power stroke is accomplished in part by a bending of

a helix contained within a region known as the relay, which

in turn interfaces with the converter. As recently modeled

(Koppole et al., 2006), a steric clash between another
C

structural element that connects to the converter, the

SH1 helix, causes the bending of the relay helix and thus

priming of the lever arm. As shown in Figure 3, substitution

of bulky side chains in the relay of myosin VI lessens this

steric clash, allowing its relay to be closer to the SH1 helix.

This decreases the bending of the relay helix as compared

with the relay of myosin II, resulting in a 10� difference in
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the amount of converter rotation, such that the myosin VI

converter is less ‘‘primed’’ toward the minus-end of an ac-

tin filament in the pre-powerstroke state than is a plus-end

directed motor. This helps increase the stroke size, since

in its pre-powerstroke state, the myosin VI lever arm

needs to be positioned toward the plus-end of the actin

filament.

A New Conformation of the Converter Repositions
the Lever Arm in the Pre-Powerstroke State
While the 10� repositioning of the converter due to the al-

tered relay conformation contributes to the repositioning

of the lever arm, the main structural adaptation underlying

the large myosin VI stroke size is a rearrangement of the

converter itself. Such a rearrangement has not been

seen for any other myosin converter, and is possible due

to myosin VI-specific structural adaptations illustrated in

Figure 4. Note that the interfaces between the converter

and the relay and SH1 helices are conserved, demonstrat-

ing that the converter remains tightly coupled to the motor

during its rearrangements. However all of the helices of

the converter reorient in the pre-powerstroke conforma-

tion, including the first (proximal) helix of insert 2, which ro-

tates by �90� relative to the last helix of the converter.

While we have previously suggested that insert 2 might

uncouple from the converter in the pre-powerstroke state,

this structure suggests that instead it remains tightly cou-

pled, but is reoriented by the overall converter conforma-

tional change. As highlighted in Figure 4, the relative

movements of the converter helices are made possible

by four flexible linkers or hinges (shown in black) and by

hydrophobic surfaces on which rotation of the helices

can occur. The combination of the 90� rotation of the insert

2 proximal helix within the converter, the 25� rotation of the

last helix of the converter, and the overall converter rota-

tion of about 60� between pre-powerstroke state and

rigor, accounts for a minimal lever arm rotation of �140�,

as indicated in Figure 2. Based on modeling presented be-

low, interactions between the lever arm and the converter

may contribute to the exact position adopted by the lever

arm (Figure 5A).

Modeling the Complete Myosin VI Lever Arm
onto the Pre-Powerstroke Structure
In order to provide a better estimate of the stroke size pre-

dicted by the pre-powerstroke structure, we modeled the

full myosin VI lever arm onto the structure. The model of

the lever arm of the myosin VI pre-powerstroke structure

was obtained by superimposing the final residues of the

insert 2 proximal helix present in the MD structure (resi-

dues 785–788) with those of the myosin VI MD-IQ rigor-

like state structure (2BKI; Ménétrey et al., 2005). A small

adjustment of the lever arm orientation allowed position-

ing of the lever arm so that contacts could be formed be-

tween the converter and the N-terminal lobe of the cal-

modulin as exist in the rigor-like structure (Figure 5A).

Note that in this model, the myosin VI lever arm is oriented

roughly parallel to the actin filament, pointing toward the
304 Cell 131, 300–308, October 19, 2007 ª2007 Elsevier Inc.
plus-end. The model results in a lever-arm rotation of

�180� from pre-powerstroke to rigor, accounting for

a movement of 11–12 nm at the end of the lever arm (Fig-

ure 5B). If contacts between the converter and CaM are

not formed, then the rotation would be somewhat less

(>140�), and the lever arm would likely be highly mobile

in the pre-powerstroke state. Only the full 180� rotation

correctly predicts the measured stroke size for the con-

struct with the full myosin VI lever arm (Rock et al.,

2005). Furthermore, as noted in Figure 5B, the modeled

position of the pre-powerstroke lever arm provides correct

predictions for the directionality and reasonable predic-

tions for the stroke sizes of the series of truncated myosin

VI constructs characterized by Bryant et al. (2007). Any

model that decreases the rotation of the lever arm will

lead to increasing discrepancies between measured and

predicted stroke sizes. Note that in any event, as illus-

trated in Figure 5C, this large stroke size cannot entirely

account for the observed myosin VI step size of 30–36

nm (Park et al., 2006; Rock et al., 2001; Nishikawa et al.,

2002) without some extension of the lever arm, as previ-

ously proposed (Rock et al., 2005).

DISCUSSION

An important question is what drives the converter to alter

its conformation from the new form seen in the pre-power-

stroke, to the more conventional folding seen in the rigor

conformation of myosin VI and in all other myosins. Illus-

trated in Figure 6 is a model demonstrating that the con-

ventional (rigor) conformation of the myosin VI converter

can be accommodated in the pre-powerstroke structure

(but as previously noted, would reduce the stroke size).

However, as also illustrated in Figure 6, the unusual (pre-

powerstroke) converter conformation cannot be accom-

modated in the myosin VI rigor-like structure due to a steric

clash with the N-terminal subdomain of the motor. Fur-

thermore, the rigor converter conformation is stabilized

by specific interactions with the N-terminal subdomain

of myosin VI (Figure 6B). These observations suggest

that the pre-powerstroke converter conformation is fa-

vored in the absence of constraints, and likely exists in

the initial states of the powerstroke. It must be forced

out of this conformation and into the conventional confor-

mation later in the cycle, prior to formation of the rigor

complex on actin. Indeed, the relatively large heat capac-

ity and enthalpy changes seen with ADP binding to acto-

myosin VI (Robblee et al., 2005) could be indicative of con-

verter rearrangements.

In addition to creating a larger stroke size, the converter

rearrangements of myosin VI could be influenced by

strain, and therefore be exploited for fine-tuning of cellular

functions. A recent study demonstrated that during pro-

cessive movement gating of the lead head of a myosin VI

dimer is accomplished by preventing ATP binding (Swee-

ney et al., 2007). At the same time, and unlike the gating for

myosin V, ADP release is unaffected (Sweeney et al.,

2007). This appears to be accomplished by rearward



Figure 5. Modeling the Lever Arm onto the Myosin VI Pre-

Powerstroke (PPS) Structure Explains the Large Stroke Size

of Myosin VI

(A) The structure of myosin VI prior to force generation (pre-power-

stroke [PPS]) is shown with a model for the position of the myosin VI

lever arm. The lever arm, consisting of the Ca2+-CaM-binding region

of insert 2 (purple), and the IQ motif with its associated CaM, were

not present in the truncated protein and thus were modeled in the

PPS structure (based on the rigor-like structure shown in Figure 2).

As in the rigor-like structure, the lever arm was positioned to allow
strain positioning insert 1 in the lead head of the myosin VI

dimer so that it restricts the entry of the gamma phosphate

of ATP, but does not restrict ADP entry or release. One ob-

servation of the study that was difficult to understand was

that once the rear head detaches, relieving the intramolec-

ular strain, there was a significant delay before ATP could

bind to the lead head. Based on the converter structure

described in this study, one possible explanation is that

rearward strain maintains the pre-powerstroke conforma-

tion of the converter. Once the strain is relieved, the rate-

limiting step for ATP binding to the lead head could be

a combination of converter rearrangements that allow

the rigor state to form, coupled to insert 1 repositioning.

Another unexplained property of the processive move-

ment of a single dimeric myosin VI molecule along an actin

filament is its highly variable step size (Park et al., 2006;

Rock et al., 2001; Nishikawa et al., 2002). While it has

been proposed that this variability might be due to a flexi-

ble lever arm extension (Rock et al., 2005), much of the

source of the variability recently was shown to reside within

the myosin VI motor domain (Park et al., 2007). This is

based on the observation that when the lever arm and

coiled coil of myosin V were appended to the last helix of

the myosin VI converter, the step size of the plus-end di-

rected chimeric dimer displayed as much variability as for

wild-type myosin VI (Park et al., 2007). Thus the possibility

that the converter of the rear head of a processive myosin VI

dimer might be undergoing a transition from its pre-power-

stroke to rigor conformation, and thus be in either of its two

conformations while the unattached lead head is searching

for an actin binding site, could contribute to the highly vari-

able step size.

The pre-powerstroke structure presented herein cor-

rectly predicts the measured myosin VI stroke size and

obviates the need to postulate any type of uncoupling

interactions between the N-terminal lobe of the insert 2 Ca2+-CaM

and the converter. However, the exact interactions found in the

rigor-like state between Ca2+-CaM and the converter cannot be con-

served in the PPS since the converter folding is different.

(B) To visualize the stroke of myosin VI, the myosin VI pre-powerstroke

structure with modeled lever arm is overlaid on the rigor-like structure

after superimposing the lower 50 kDa domains of the two structures.

The calmodulins are omitted for clarity. The new myosin VI pre-power-

stroke structure with the modeled lever arm, together with the rigor-like

structure, predict an�12 nm powerstroke toward the minus end of the

filament for myosin VI with its two calmodulin-containing lever arm, in

agreement with what has been measured (Rock et al., 2005). (This is

labeled as position 4 on the lever arm.) The stroke sizes of truncated

constructs characterized by Bryant et al. (2007) are indicated at lever

arm lengths labeled 1–3. The measured directionality and stroke sizes

for these constructs were: (1) +2 nm, (2) +2 nm, and (3)�7nm to�9 nm.

As indicated in the figure, the structure-based predictions of direction-

ality and stroke sizes are: (1) +5 nm, (2) +2 nm, and (3) �5.2 nm.

(C) The myosin VI pre-powerstroke and rigor-like structures are

docked on an actin filament with a 36 nm step separation between

them, consistent with the measured step size of a full-length myosin

VI dimer (Park et al., 2007). The distance between the ends of the

two lever arms is large (24 nm), indicating that an extension of the lever

arm must exist to connect them, as has been shown experimentally

(Rock et al., 2005).
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Figure 6. Converter/N-terminal Subdomain Interactions

The position of the converter may also be influenced by the interactions it makes with the N-terminal subdomain. These interactions are weak in the

case of the pre-powerstroke structure (A) but they are quite important in the rigor state (B). Note that the surface of the N-terminal subdomain involved

in each case is different. Since the converter/relay interface is similar in both structures, it is possible to model the rigor converter conformation in the

pre-powerstroke state (C) and the pre-powerstroke converter conformation in the rigor structure (D). It is clear that the rigor converter conformation is

compatible with the pre-powerstroke structure but would not allow any interactions to be made with the N-terminal subdomain (C). In contrast, the

pre-powerstroke conformation is incompatible with the rigor structure since a large steric clash would occur between the converter and the N-ter-

minal subdomain (D). Thus, it seems that the unusual pre-powerstroke folding of the converter would be favored by myosin VI in the absence of con-

straints. Rearrangement to create the rigor folding, which is the one most similar to that of plus-end motors, may be triggered near the end of the

working stroke by converter/N-terminal subdomain interactions.
involving either the converter or insert 2. Rather, the con-

verter and insert 2 can maintain connectivity while

reorienting their helices. Although converter rearrange-
306 Cell 131, 300–308, October 19, 2007 ª2007 Elsevier Inc.
ments of this sort have not been observed for myosin II

or myosin I and have not previously been considered in

the swinging lever arm hypothesis, such rearrangements



could give rise to larger stroke sizes in the case of plus-

end directed myosins. This is illustrated in the model

shown in Figure 7, in which the stroke size of scallop my-

osin II with its complete lever arm would be increased by

50% (from 12 nm to 18 nm) using the pre-powerstroke

converter rearrangement found in myosin VI. (This also

can be visualized in Figure S1 by noting that the position

of the last helix of the converter of myosin VI moves in

a plus-end directed manner, consistent with recent stud-

ies [Park et al., 2007; Bryant et al., 2007]. However, the

magnitude of this plus-end directed movement is larger

than if the converter rearrangement did not occur.) While

the unitary displacement (stroke size) increases with lever

arm length, the unitary force decreases. Since the con-

verter rearrangement mechanism of myosin VI generates

larger movements without the need to increase the length

of the lever arm, it may offer a better compromise between

maximizing force production and stroke size. Thus it is

possible that some classes of plus-end directed myosins

that have yet to be examined in detail might use a similar

scheme of converter rearrangements to amplify the size

of their movements.

Figure 7. The Myosin VI Pre-Powerstroke Converter Confor-

mation Would Increase the Stroke Size of a Plus-End-Di-

rected Myosin

Using a pre-powerstroke (1QVI; Gourinath et al., 2003) and a rigor-like

structure (2OS8; Yang et al., 2007) for scallop myosin II, the predicted

stroke size with the full myosin II lever arm (containing two calmodulin-

like myosin light chains) is 12 nm. (This is reduced to 7 nm for a single

IQ-containing lever arm, as in Figure 1A.) This is compared to the pre-

dicted stroke size based on modeling the myosin VI pre-powerstroke

converter into the scallop pre-powerstroke structure. In this model,

the pre-powerstroke lever arm position would be moved further to-

ward the (�) end of the actin filament, and more parallel with the actin

filament, increasing the predicted stroke size to 18 nm (10 nm for a

single IQ-containing lever arm). While it is clear that this converter

rearrangement mechanism is not used by myosin II, we propose

that in addition to myosin VI, it may be used by classes of unconven-

tional myosins that have yet to be characterized in order to create

larger powerstrokes.
EXPERIMENTAL PROCEDURES

Protein Constructs, Expression, and Functional Assays

To create the myosin VI MD construct used to obtain crystals, the por-

cine myosin VI cDNA was truncated after isoleucine 789. This trunca-

tion is at the end of the first (proximal) helix of insert 2, and precedes

the CaM-binding site of insert 2. A Flag tag (encoding GDYKDDDDK)

was appended to the N-terminus to allow for purification. The con-

struct was used to create a recombinant baculovirus and express pro-

tein in SF9 cells, as previously described (Sweeney et al., 1998).

ATPase assays and ADP release from actomyosin VI measurements

were performed as previously described (De La Cruz et al., 2001).

Crystallization and Data Collection

Crystals of myosin VI MD were obtained by vapor diffusion method

with spontaneous nucleation occurring at 18�C in hanging drops using

equal amounts of reservoir solution (containing 3%–4% PEG 8000, 50

mM MES [pH 6.75], 100 mM SAM, 1 mM TCEP) and stock solution of

the protein at 6–8 mg/ml. Prior to freezing and data collection, the crys-

tals were transferred into a final cryoprotectant solution containing 8%

PEG 8000 with 20% Ethylene glycol. X-ray data sets were collected at

100 K on the ID23-1 beamline of the European Synchrotron Radiation

Facility. Data sets were integrated with MOSFLM (Collaborative Com-

putational Project, Number 4, 1994) and scaled with SCALA (Collabo-

rative Computational Project, Number 4, 1994). See Table S1 for sta-

tistics on the data collection.

Structural Determination and Refinement

The myosin VI structure was solved by molecular replacement with the

program AmoRe (Navaza, 1994) at 3.0 Å resolution using a myosin VI

pre-powerstroke state polyalanine model (superposition of the N-ter-

minal, the upper and lower 50kda subdomains of myosin VI rigor-like

structure (Ménétrey et al., 2005:PDB code 2BKH) on those of the my-

osin II Dictyostelium discoideum pre-powerstroke structure (Smith and

Rayment, 1996: PDB code 1VOM). The SH3 subdomain and the side

chains were manually built and refined with Refmac5 (Collaborative

Computational Project, Number 4, 1994). Overall refinement and wa-

ter/heterogen molecule attribution were then carried out at 1.75 Å res-

olution with Refmac5 (Collaborative Computational Project, Number 4,

1994) and Coot (Emsley and Cowtan, 2004). See Table S1 for statistics

on the structural refinement. Note that all figures were computed using

MOLSCRIPT (Kraulis, 1991) with Raster3D rendering (Merritt and

Bacon, 1997).

Supplemental Data

Supplemental Data include two figures, one table, and a movie and

can be found with this article online at http://www.cell.com/cgi/

content/full/131/2/300/DC1/.
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