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Intracellular molecular motor-driven transport is essential for such
diverse processes as mitosis, neuronal function, and mitochondrial
transport. Whereas there have been in vitro studies of how motors
function at the single-molecule level, and in vivo studies of the
structure of filamentary networks, studies of how the motors
effectively use the networks for transportation have been lacking.
We investigate how the combined system of myosin-V motors plus
actin filaments is used to transport pigment granules in Xenopus
melanophores. Experimentally, we characterize both the actin
filament network, and how this transport is altered in response to
external signals. We then develop a theoretical formalism to
explain these changes. We show that cells regulate transport by
controlling how often granules switch from one filament to an-
other, rather than by altering individual motor activity at the
single-molecule level, or by relying on structural changes in the
network.

Intracellular transport of various cargos is essential for proper
cell function, yet the principles regulating cargo motion are still

not well understood. Whereas thermal diffusion is sufficient for
the transportation of many small molecules, e.g., ATP or acetyl
CoA, larger cargos require an active transit system. Such intra-
cellular transport is present in all eukaryotic cells and is realized
by a system of polymerized filaments [actin filaments (AFs) and
microtubules (MTs)] and molecular motors [myosin-V (M-V),
kinesin, dynein, etc.], not unlike roadways and trucks. The
general model (1) is that the orderly MT filaments provide
long-distance transport from the periphery to the nucleus or vice
versa, in a fairly linear manner. In conjunction, AFs provide local
transport from the MT superhighways to the remainder of the
cell (2). Whereas there have been careful studies of single-motor
properties as well as of the structure of the filamentary networks,
there are deficiencies in our understanding of how those com-
ponents work together to provide efficient, reliable transport. In
this paper, we show that cells can change the way they transport
cargo predominantly by changing the way the cargos use the
network, rather than by changing individual motor properties, or
by relying on changes to the structure of the filamentary
networks.

To make general transport into a tractable problem, we
simplify it considerably and study it within the context of the
Xenopus melanophore model system. The skin cells of this
system are adapted for color camouflage by either moving
pigment granules to the vicinity of the center of the cell in a
process called aggregation, or by distributing them uniformly
throughout the cell in a process known as dispersion (1). Because
these cells are very nearly two-dimensional and the half-
micrometer pigment granule cargos are easily discerned, they are
an ideal system in which to observe active transport with
single-particle tracking. Because MTs are long, radially arranged
filaments, there is less uncertainty about how MT-based trans-
port works compared with transport on AFs. Thus, we eliminate
MTs and focus on understanding transport on actin by means of
the molecular motor, M-V. By using single-particle tracking, we
find that the mean square displacement of cargos after a given

amount of time is much larger during dispersion than during
aggregation. We show that this change is not due to altering the
speed of the M-V motors, nor can changes in the structure of the
actin network account for this change. By combining a theoret-
ical diffusion model and a numerical simulation, we show that
this change in intracellular transport is controlled by altering the
probability for a cargo to switch from filament to filament.

Tracking Data
Individual cargos were tracked in cells that lacked MTs and only
had AFs. Thus, cargo motion appeared to be quasi-Brownian
over long periods of time, although cargos could instantaneously
move linearly along an AF. Cells were either treated with
melatonin to induce aggregation or with melanocyte-stimulating
hormone to induce dispersion (1). We analyze transport by
measuring the average of the square of the displacement as a
function of time �r2(t)� (Fig. 1), as in previous work (1). Our work
extends previous data (1) two to four times longer, allowing the
observation at long times of Brownian motion, where �r2� is
linear in time. Two features of Fig. 1 are especially striking: the
crossover from positive curvature at short times to long-time
linear behavior and the difference in the magnitude of �r2� for
dispersion and aggregation. The positive curvature of �r2� at
short times indicates that ordinary diffusion does not hold. There
are two more general forms of anomalous diffusion that we can
consider (3). The first is power-law diffusion with �r2(t)� � At�
for constant A and power ��1 (4). Alternatively, suppose the
motors haul the cargos along a filament for some distance and
then turn onto a new filament. In this case, a Langevin form
associated with the solution of the Langevin equation is a
reasonable interpolation formula between linear motion at short
times and diffusion at long times (5):

�r2�t�� � D�t � ��1 � exp �
t
�
� � [1]

where D is a diffusion coefficient and � sets a time scale for
crossover from short- to long-time behavior. Note that some
authors place an arbitrary factor of 4 in front of the D. Treating
Eq. 1 as a fitting function, a time scale � is introduced, which
separates short-time (t��) linear motion (�r2� � t2) and long-time
(t � �) diffusive motion (�r2� � t). It should be noted that the
existence of the AF network makes other fitting forms possible
(6, 7), but the two mentioned here are reasonably general.

To distinguish which functional form is best for modeling, we
fit both equations to the data on time ranges of [0,2], [0,4], . . . ,
s. The parameters are plotted versus the size of the time range,
in Fig. 2. After a fairly rapid rise, the Langevin fits (Fig. 2 A and
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B) converge to fixed values, but the power-law fits (Fig. 2 C and
D) do not converge on the available time scale. Thus, because it
depends less strongly on the amount of data taken, the Langevin
form is preferred. The fit parameters at the longest time are
presented in Table 1.

One remaining problem is that at short times the power �
should be 2 to be fully consistent with the Langevin equation,
instead of the smaller value seen in Fig. 2D. This discrepancy is
possibly due to colliding or immobile cargos at short times.

Furthermore, at long times, one might expect the power to be
1 rather than 	1.2, but this is just an artifact of the system being
at 	20� at the longest times because a fit of a power law to a
Langevin function from 0 to 20 � gives an apparent exponent of
	1.1. Finally, the Langevin equation technically models a system
in thermal equilibrium, which is not true for the M-V motors
because they are actively hydrolyzing ATP. However, assuming
the M-V motors are moving smoothly in steady state, the
resulting constant kinetic energy of the cargos can be treated as
an effective temperature consistent with the Langevin formal-

ism. Thus, despite the possible deficiencies at short times, Eq. 1
seems consistent with both the aggregation and dispersion data,
and, as will be seen below, it is especially convenient for inferring
the motion of individual cargos from their average. However, we
will be careful to never rely solely on Eq. 1 and the Langevin
formalism from which it came, but we will rely on them to some
extent to verify results from other approaches.

Interestingly, we find that the cargos’ speed does not change
much between dispersion and aggregation. The speed is calcu-
lated from the cargo’s average displacement over a short time.
Some care is required because the tracking error is comparable
to the separation between tracking points, causing a systematic
error (see Figs. 8 and 9 and Supporting Text, which are published
as supporting information on the PNAS web site). The corrected
speeds are va � 72 
 4 nm�s for aggregation and vd � 80 
 5
nm�s for dispersion, which agree within errors. Because of the
complexity of the tracking error, the speeds are also calculated
from the fits to Eq. 1. From the Langevin formalism, we can
approximate the speed of the particle as given by �v� 	 �D�2�.
Plugging in numbers from Table 1 gives va � 82 
 4 nm�s and
vd � 91 
 2 nm�s, which is in reasonable agreement with
the more direct measurements. Some of the overestimate in the
Langevin speeds can be explained by the reliance on the
approximation �v2� 	 �v�2. The fact that the Langevin estimates
are comparable to the speeds determined from particle tracking
means that both approaches are giving reasonable estimates for
the speed. Thus, the cargo speeds do not change significantly
from aggregation to dispersion. This result implies that the large
difference between aggregation and dispersion must be gener-
ated not by changes in the speed of individual cargos, but by
cargo interactions with the filament system.

A useful parameter that characterizes the motion of cargos is
the mean free path (MFP) which is the average distance a cargo
travels in a straight line, or on a single filament. First, the MFP
is estimated directly from the tracks used to find �r2�. Each track
is a set of points that correspond to the position of a single cargo
over time. As already mentioned, the tracks consist of linear
sections, where the cargos are traveling along a single filament,
and sharp turns, where cargos switch to a new filament. The
position of the sharp turn from one filament to another (turning
point) for a given track is found by examining the tracks by hand
and estimating the positions. This procedure is performed for a
sample of the tracks: aggregation, 17 tracks with 154 total turning
points; dispersion, 30 tracks with 195 total turning points. Then,
the average distance between turning points is calculated and is
the MFP. In aggregation, it is 260 
 20 nm, and in dispersion,
it is 600 
 40 nm, where the error is the SE of the mean. Because
the location of the turning points is found by hand, the error
estimates may be unreliable.

The Langevin formalism provides an alternate measurement
of the MFP by multiplying the speeds by the time � to give 237 

12 nm (aggregation) and 539 
 9 nm (dispersion). These findings
agree well with the direct measurements and have both more
reliable error estimates and use of all of the tracks. It is somewhat
surprising that the Langevin formalism works so well in this case,
because, as noted before, the physical basis for using Langevin
is somewhat shaky. However, its excellent agreement with direct
measurements of both the speeds from before and the MFP here
show that the Langevin formalism captures the essential physics

Table 1. Fit parameters for Langevin interpretation

State of cell D, �m2�s �, s

Dispersion 0.0984 
 0.0007 5.9 
 0.2
Aggregation 0.0388 
 0.0006 2.9 
 0.3

Errors are from the fit.

Fig. 1. Particle tracking data and fits for aggregation (70 tracks) and
dispersion (40 tracks). For clarity, only every 50th data point is shown in Left
and every 20th in Right. The error bars represent errors from the tracking. As
described in the text, the solid (blue) lines are fits to simulations, and the
dashed (red) lines are fits to the Langevin solution. (Right) A magnification of
the aggregation region is shown on to emphasize the fits, errors, and short-
time curvature.

Fig. 2. Fit parameters versus maximum fit time. (A) The Langevin parameter
D. (B) The parameter �. (C) T coefficient A from the power-law fit. (D) The
power-law exponent �. Gray triangles, aggregation; black squares, dispersion.
Note that the Langevin parameters have converged, whereas the power-law
parameters are not conclusive.
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of the situation. Also, the Langevin formalism very quickly and
easily gives results that are otherwise torturously difficult to
estimate.

Electron Micrographs (EMs)
The MFP can also be deduced from the AF network seen in EMs
taken of fixed cells (Fig. 3 A and B). Because single M-V motors
are processive over long ranges (Davg � 1,600 nm; ref. 8), the
cargo is likely to change direction not because the motor
randomly falls off the filament, but instead because either the
filament ends or the cargo switches to moving along a different
filament. Thus, the structure of the AF network could determine
the MFP of a cargo in two ways. In the first scenario, a cargo
starts randomly on a filament, goes to the end, falls off, and
attaches to a new filament. In this case, the average distance
traveled on a filament (equivalently, the MFP) is the average
filament length L� divided by 2, because the cargo starts at every
point on the filament with equal probability. Here, L� � 1,300 

200 nm (Fig. 4), giving an approximate MFP of 650 
 100 nm,
where the errors are estimated from Fig. 4.

In the second scenario, the cargo may switch from one
filament to another where the two filaments cross. Define ps as
the probability to switch at a filament and dI the average distance
between filament intersections. Assuming the filaments are
infinitely long and that the cargos start at intersections, the MFP
is the initial dI to the first intersection ahead, plus an additional
dI for each skipped intersection. The average number of skipped
turnings is 1�ps (see Supporting Text). Thus, the MFP is dI�ps. For
ps less than some value, the MFP will be larger than half a
filament, and the assumption of an infinite filament breaks down.
In this case, the first scenario applies and the MFP is L� �2. For
simplicity our MFP estimate of dI�ps ignores what happens at the
ends of the filaments. Including end effects makes the problem
analytically intractable, and we will turn to simulations below to
handle them. We can measure dI directly by drawing straight
lines of a given length and counting the number of times they
intersected and AF. This result shows a distance of dI � 160 

40 nm during aggregation and dI � 330 
 70 nm during

dispersion, reflecting an apparent change in density seen in Fig.
3 A and B.

Unfortunately, the value of ps is not independently known in
aggregation or dispersion, but for an initial estimate, we can
require the rough formula for the MFP from the EMs to match
the MFPs already calculated. In aggregation, the MFP derived
from the Langevin fit is less than half of a filament length,
implying a non-zero switching probability between filaments. We
calculate this probability by ps � dI�MFP � 70%, where �
indicates that this rough estimate ignores end effects. In disper-
sion, the Langevin-calculated MFP is approximately L� �2, im-
plying that the cargos only switch when they reach the end of
their current AF. Thus, ps is effectively zero, although it could be
as high as 30% and still traverse an entire filament without
turning. This change in the calculated value of ps indicates that
the cargos change directions more often during aggregation than
during dispersion.

Another feature of the EMs in Fig. 3 is the change in the
density of the AF network between the aggregation and disper-
sion cases. Experimentally, this result was quantified by ran-
domly placing circles on the EM images and counting the
intersecting AFs, defined as the touching number nt. The circles
have a diameter of 568 nm because the average cargo diameter
is 568 
 72 nm. nt � 7.8 
 2.5 (mean 
 rms) during aggregation
(Fig. 3C), and nt � 4.2 
 1.9 during dispersion (Fig. 3D). Because
the statistics are low (three cells for aggregation and two for
dispersion), we avoid general conclusions about density, and
investigate the significance of changes in filament density by
using computer simulations (see below).

Interestingly, during dispersion where the density appears
lower, the minimum expected touching number is 	2, corre-
sponding to the current filament and the one onto which a cargo
switches. Thus, the cell could be minimizing the total number of
filaments, it creates subject to the constraint that at least one new
filament is available (to avoid stranded cargos). We should
mention that quantitative measurements of fluorescence in
phalloidin-stained cells failed to detect a difference in the total
amount of polymerized actin between aggregated and dispersed
cells, although in principle, changes in bundling could alter the
effective AF density without changing total polymer mass.
Definitively determining whether the actin cytoskeleton is al-
tered between aggregation and dispersion is certainly interest-

Fig. 3. Quantification of actin filament network. (A) EM of an aggregating
cell; actin is yellow. (B) EM of a dispersing cell. The scale bars (white) are 1 �m
long. Platinum replica EM was performed as described (21). (C) Distribution of
the number of filaments reachable by a randomly placed cargo during aggre-
gation. (D) The same as in C, during dispersion.

Fig. 4. Measured probability of finding an AF of a given length. Data are the
same for aggregation and dispersion. The mean length is 	1.3 �m.
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ing, but a careful study of this question is beyond the scope of this
predominantly theoretical paper.

Simulations
The simplistic model of infinite filament lengths in the previous
section suggests that a more realistic numerical model is worth-
while. We combine the EMs and the known properties of M-V
to build such a model. In our simulations, AFs are represented
by unidirectional straight lines with lengths chosen from Fig. 4.
Simulated AFs are placed randomly on a circular region of radius
R �� L� , representing an idealized cell’s extended cytoplasm. The
density is adjusted by fixing the number of simulated AFs and
varying R. Cargos are placed on the network and are allowed to
switch either to an intersecting AF or, if they reach the end, to
any AF within reach. More simulation details are in Fig. 10,
which is published as supporting information on the PNAS web
site, and Supporting Text, but the best analogy to follow is one of
walkers attached to and moving on a network of one-way roads.

One simplification is that moving cargos only switch onto new
AFs that physically cross their current AF, ignoring any other
AFs within reach. This conclusion is reasonable because pro-
cessivity along an AF requires at least one properly attached and
functioning M-V. Thus, for a different motor to pull the cargo
onto a new AF, it has to both find a new AF and unbind the
current motor. At physical AF crossings, the M-V activity is
possibly interrupted and a new AF is guaranteed to be nearby,
heightening the chance to switch. Thus, crossings are well
modeled by a switching probability ps. Finally, at filament ends,
any filament within reach is accessible because thermal energy
is sufficient to rotate the cargo rapidly, giving its motors ample
opportunity to attach to a new filament (9).

The simulations model the combined effects of switching
probability and filament density on the cargos’ transport by
independently varying them about the EM values. For each ps
and density, we run 100 network realizations, each with 1,000
trials. The MFP is calculated by directly tracking the distance
between turns and averaging (Fig. 5). As a means of verification,
the �r2� (see below) is also fit to a Langevin form, and the
subsequent MFP agrees with the direct measurement from the
simulations. Note that this verification provides support for using
Langevin as an interpolation form in the first place.

Two important conclusions are drawn from this simulation.
First, (see Fig. 5) when the simulations were done at the
experimentally determined touching numbers nt (aggregation,

7.8 
 2.5; dispersion, 4.2 
 1.9), to achieve MFPs that matched
the Langevin-fit derived values (aggregation, 237 
 12 nm;
dispersion, 539 
 9 nm), it was necessary to use switching ps of
50 
 15% for aggregation and 6 
 6% for dispersion, where
errors are estimated from Fig. 5. These values are consistent with
the rough estimates taken directly from the EMs (aggregation,
	70%; dispersion, less than 	30%) as well as the direct exper-
imental measurements of the MFPs, but the simulated values
include AF end effects and so are more reliable. Thus, the
simulations confirm the original Langevin study that suggested
that the probability of switching between filaments is different in
aggregation and dispersion.

Second, surprisingly, varying the density alone does not ex-
plain the experimentally observed variation in MFP. For in-
stance, from Fig. 5 we can see that under the assumption of 50%
switching, it is not possible to achieve a dispersion-like MFP by
altering filament density. Similarly, to be able to attain an
aggregation-like MFP requires at least a 25% chance to switch
filaments, even at filament densities much higher than experi-
mentally observed (i.e., nt � 15). Finally, by altering switching
probability alone but keeping filament density constant (e.g., nt
� 5) it is possible to achieve both dispersion-like and aggrega-
tion-like MFPs. Therefore, control of AF-based transport is
achieved by tuning the switching probability ps, with alteration
of density being less important or possibly even irrelevant.

To build intuition about the effects of various ps, a sample plot
of simulated paths (‘‘trajectories’’) of individual granules in
aggregation and dispersion is seen in Fig. 6. In general, during
aggregation (Fig. 6 Left), the cargo frequently switches from
filament to filament, giving short, randomly oriented steps
leading to clumped trajectories that sample the local neighbor-
hood. Instead, during dispersion (Fig. 6 Right), switching only
occurs at the end of the filaments, making the paths appear long
and spindly, and is effective at spreading out the cargos.

To be more quantitative, �r2� is measured in simulations with
100 network realizations, each with 1,000 trials, for aggregation
(ps � 50% and nt � 7.8) and dispersion (ps � 0% and nt � 4.2).
The simulation length scale is already in nanometers, but the
time scale is in arbitrary time steps TS. To convert from TS to
seconds, the simulated �r2�’s time is scaled onto the experimental
�r2�’s time (Fig. 1). This scaling gives 2.1 
 0.1 TS�s for
aggregation and 2.0 
 0.1 TS�s for dispersion. The scaling is
checked with the speed. Converting from the fixed simulation
value of 37 nm�TS (10) to units of nm�s gives va � 78 
 2 nm�s
and vd � 74 
 2 nm�s. Aggregation agrees with previous
estimates, but dispersion is 	10% lower than expected, probably
reflecting a slightly non-zero ps. As another means of verifica-

Fig. 5. MFP calculated from simulations at various switching probabilities
and touching numbers. Errors reflect both the SD of the separate runs and the
error in the measured filament length, as weighted by the probability to get
to the end. The dashed lines represent the MFP values from the Langevin
formalism; dark (top) is dispersion, and light (bottom) is aggregation. Note
that varying density (touching number) alone is insufficient to vary the MFP
over the experimentally observed range.

Fig. 6. Sample simulation data for aggregation (Left) and dispersion (Right).
The colored lines represent paths taken by sample walkers and the gray lines
represent filaments. (Bar, 10 �m.) All walkers took 1,000 steps or walked for
	500 s. Note that aggregation paths (Left) tend to be local and clumped,
whereas dispersion paths (Right) tend to be spread out and spindly. For
aggregation, we set ps � 50% and nt � 7.8; and for dispersion, we set ps � 0%
and nt � 4.2.
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tion, the simulated �r2� is also fit to a Langevin form, and the
speed is calculated. In this case, the speeds are va � 37.8 
 0.1
nm�TS and vd � 38.38 
 0.03 nm�TS. Both cases overestimate
the actual speed (37 nm�TS) by up to 4% due to the approxi-
mation of �v2� 	 �v�2. This result lends credence to the earlier
claim that the Langevin speeds are systematically too large.

Finally, the cargos’ displacement after 30 s (real time) is
tracked to verify that the net magnitude of the motion is
reasonable. The distribution (Fig. 7) shows that aggregating
cargos tend to stay within 700 nm of their origin, whereas
dispersing cargos spread out more evenly over a range of
500–2,700 nm, verifying the intuitive picture of Fig. 6. Experi-
mentally, inter-MT spacing is 	800 nm, estimated from a figure
in ref. 1. Thus, in a reasonably short time, the M-V-driven motion
finds an MT during aggregation, and spreads out the cargos
evenly over the region between MTs during dispersion. Note that
by having a large characteristic time �, the dispersing cargos stay
in the short-time diffusion regime longer. Thus, compared with
aggregating cargos, the dispersing cargos spread themselves out
with a distribution that remains fairly f lat for much longer times
(and distances). Therefore, we have verified that dispersing
cargos do indeed perform better at the task of spreading out than
do aggregating cargos.

Discussion
Thus far, experiments combined with simulations provide a
consistent picture of the intracellular transport on AF networks.
Specifically, cargo transport on the AF network is not controlled
by varying the speeds of the cargos, but instead is controlled by
the probability that a cargo switches filaments at an intersection.
This finding leads to the conclusion that the MFP of cargos in
dispersion is much longer than that of aggregation. By using
these MFPs, the simulations indicate a switching probability
close to 0% during dispersion, and ps 	 50% during aggregation.
An accompanying change in filament density can in principle
fine-tune the motion. Also, we verified that by remaining in the
short time diffusion regime for a relatively long time, dispersing
cargos spread themselves out more uniformly than aggregating
cargos.

Two further questions will be addressed here. First, it is not
clear that aggregating cargos are in any way superior to dispers-

ing cargos in terms of finding an MT, although some simple
simulations seem to indicate that they have a slight edge over
dispersion (see Supporting Text, and Fig. 11, which is published
as supporting information on the PNAS web site). In any case,
it is clear that the motion during aggregation is at least neutral
as far as finding an MT goes when compared with dispersion.
Thus, the change in motion may be important, but could also be
a side effect of a different feature.

Second, we hypothesize that ps is controlled by changing the
number of active motors, from one active M-V motor during
aggregration to two active motors during dispersion. From in
vivo force measurements on two other systems, 6–10 pN of force
stalls typical MT-driven transport (11, 12). Further, in vitro
experiments on kinesin show that an opposing force of approx-
imately half the stall force reduces the kinesin-driven travel
velocity by 50% (13), and other work suggests that dynein’s
response to load is likely similar (14). During dispersion, M-V
function decreases plus-end and minus-end MT-based transport
velocities by 	40% (1). Thus, the cargo’s M-V motors oppose
MT motion with a force of 	3–5 pN. Individual M-Vs in vitro can
exert a maximum of 2–3 pN (8, 15). Hence, two M-V motors
must be active to account for the calculated 	3–5 pN force. In
contrast, during aggregation, MT-based transport dominates
actin-based motion without slowing down (1). Thus, it is likely
that only one M-V motor is active at a time. Unfortunately, a
direct measurement of stalling force in the Melanophore system
is difficult because the pigment granules are colored and strongly
absorb optical trap laser light, heat up, and literally explode.

The 1 7 2 motor hypothesis is also consistent with the
previously measured change in the total number of M-V motors
on a cargo from 	60 (aggregation) to 	90 (dispersion; ref. 1).
A number of testable factors could contribute to this relatively
low utilization. First, in vivo estimates of AF to M-V binding rates
are not well known so many M-Vs may be required for any to be
processive. Second, in some cases there are proteins present on
the cargo that inactivate M-V, possibly limiting the activity (16).
Third, M-V may be localized on one part of the cargo, resulting
in many M-Vs that are out of reach of an AF (17, 18). Finally,
the 17 2 motor hypothesis is consistent with ps, switching from
	50% to 	0%. Away from AF–AF intersections, any attempts
to switch filaments is inhibited by the motion of the active M-V,
as already mentioned. At intersections, when only one M-V is
active it can be easily interrupted, giving any other M-Vs a
chance to pull the cargo onto a new filament. Assuming an
average of two filaments per intersection gives ps 	50%, corre-
sponding to aggregation. Instead, if two motors are active then
at least one is always driving the cargo forward, so the cargo has
little chance to switch. In other words, another M-V trying to pull
the cargo onto a new filament would be unlikely to overpower the
two M-Vs already attached to the current filament. This result
gives ps 	0%, corresponding to dispersion. Therefore, the 1 7
2 motor hypothesis provides a mechanism for the cell to control
the switching probability and hence the diffusive motion.

How generally applicable are these findings? We have mod-
eled the AFs as a directed but randomly oriented network. This
conclusion appears to be true in the case of the melanophore
system, yet in many systems, the prevailing notion is that the AFs
are not random but instead are all pointing toward the plasma
membrane. However, this notion is likely incomplete. Typically,
the directionality and organization of the actin cytoskeleton has
been quantified in motile cells such as fibroblasts, especially close
to the leading edge (i.e. the edge causing motility), because the
goal has been to understand cell motility. Nonetheless, most cells
are not actively crawling. In such cells, less is known about the
actin organization, especially away from the plasma membrane
(here we ignore yeast, because for long-distance transport they
exclusively use actin cables, unlike mammalian cells that use
MTs). In such nonmotile mammalian cells, it seems likely that

Fig. 7. Displacement histograms from simulations of aggregation and dis-
persion after 30 s (real time) of diffusion. The small bump in the line near R �
2,500 nm in the dispersion line is from cargos that traveled along only one
filament and accounts for �1% of the total probability.
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many of the AFs are relatively randomly organized, similar to the
melanophore cells. We were not able to find much published
data, but one important case where our supposition appears
correct is in nerve growth cones (19). Thus, it seems likely that
the model, we have developed here has relevance to many
AF-based vesicular transport systems, whenever the transport is
occurring away from the plasma membrane. For instance, similar
�r2� versus time motion of influenza viruses in endosomes moving
along AFs has recently been reported (20).

Conclusions
In conclusion, we have examined the motion of cargos moving on
AF networks through M-V motors. We find that the mean square
displacement of cargos after a given amount of time is much
larger during dispersion than during aggregation. This change is
not due to altering the speed of the M-V motors, nor can changes
in the structure of the actin network account for it. This

experimentally measured change can be explained through
simulations and a Langevin interpolation model, combined with
measurements from EMs of the AF network. Together, these
measurements show that the cell controls motion by altering the
likelihood of switching from one AF to another with a switching
probability of 	50% during aggregation and 	0% during dis-
persion. We hypothesize that this is the result of changing the
number of active M-V motors from one during aggregation to
two during dispersion. We speculate that during dispersion the
transport is optimized for fast, even spreading.
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