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Introduction
Mitochondria cannot be made de novo and thus must be inher-
ited upon cell division (Warren and Wickner, 1996; Yaffe, 1999). 
Mitochondrial inheritance involves growth and division of ex-
isting organelles, replication of the mitochondrial genome, and 
partitioning of the organelles to the daughter cells before cyto-
kinesis. Cytoskeleton-dependent transport plays an important 
role in the partitioning of mitochondria during cell division and 
controls their morphology and intracellular distribution (Boldogh 
and Pon, 2007; Frederick and Shaw, 2007).

Budding yeast Saccharomyces cerevisiae has been used 
extensively to study the molecular mechanisms of organelle in-
heritance (Catlett and Weisman, 2000; Bretscher, 2003; Pruyne 
et al., 2004; Fagarasanu and Rachubinski, 2007; Merz et al., 
2007). During mitotic growth, yeast cells multiply by asymmetric 
cell division, a process termed budding. Correct organelle par-
titioning is achieved by active and directed transport of organ-
elles to the growing bud concomitant with retention of a portion 
of the organelles in the mother cell. Actin cables that consist of 
bundles of actin filaments provide the tracks for directed trans-
port processes during cell growth (Pruyne et al., 2004).

Class V myosins are processive molecular motors that 
transport their cargo toward the plus ends of actin filaments. 
They are involved in numerous membrane trafficking events 
(Reck-Peterson et al., 2000; Trybus, 2008). S. cerevisiae has 
two class V myosins, Myo2, which is encoded by an essential 
gene, and Myo4, which is encoded by a nonessential gene. 
While Myo4 mediates the transport of mRNAs and movement 
of ER tubules, Myo2 plays a major role in the transport of secre-
tory vesicles and segregation of membrane-bounded organelles 
including vacuoles, peroxisomes, and organelles of the secre-
tory pathway (Matsui, 2003; Pruyne et al., 2004; Weisman, 
2006; Fagarasanu et al., 2010).

Several lines of evidence suggest that Myo2 is involved  
in mitochondrial transport. Several conditional myo2 mutants 
show defects in mitochondrial distribution toward the bud (Itoh 
et al., 2002, 2004; Boldogh et al., 2004; Altmann et al., 2008), 
and cells depleted of Myo2 or its essential light chain, Mlc1, 
contain abnormal mitochondria that are devoid of mitochondrial 
DNA (Altmann and Westermann, 2005; Altmann et al., 2008). 
Moreover, isolated mitochondria lacking functional Myo2 lose 
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peroxisomes, whereas the proximal half interacts with vacuoles 
(Catlett et al., 2000; Pashkova et al., 2005b, 2006; Fagarasanu  
et al., 2009). We have previously shown that the vacuolar 
transport-defective alleles myo2(Q1233R) and myo2(L1301P) 
exhibit pronounced mitochondrial morphology and inheri-
tance phenotypes (Altmann et al., 2008). To map the site 
on the Myo2 tail required for mitochondrial inheritance more 
precisely, we constructed a series of point mutants carrying  
amino acid exchanges in the vicinity of glutamine 1,233 and  
leucine 1,301: myo2(L1229A), myo2(T1230A), myo2(K1234A), 
myo2(V1235A), myo2(V1236A), myo2(T1237A), myo2(E1293A), 
myo2(Y1303A), myo2(I1308A), and myo2(P1529S) (Fig. 1 A). 
Furthermore, we included the previously described alleles 
myo2(G1248D), myo2(D1297N), myo2(D1297G), myo2(N1304S), 
and myo2(N1304D) in our analysis (Catlett and Weisman, 1998; 
Catlett et al., 2000). As a control, we constructed two point  
mutants carrying amino acid substitutions on the backside of the 
subdomain, myo2(K1538A) and myo2(F1542A) (Fig. 1 A). Most 
mutant strains were observed to grow well on fermentable and non-
fermentable carbon sources. However, myo2(K1234A) showed 
a pronounced growth defect, suggesting that the function of the 
cargo binding domain is more severely compromised (Fig. S1).

We analyzed mitochondrial distribution and morphology 
by fluorescence microscopy in myo2 mutants expressing mito-
chondria-targeted (mt) GFP at 30 and 37°C. A significant number 
of cells contained abnormal mitochondria and/or buds devoid of 
mitochondria in all mutant strains (Fig. 1 B and Table S1). Simi-
lar, albeit not identical, effects were observed when the distribu-
tion of vacuoles was quantified after staining with CellTracker 
blue 7-amino-4-chloromethylcoumarin (CMAC; Table S1). Mito
chondrial morphology and distribution defects were most severe 
when amino acid residues neighboring glutamine 1,233 and leu-
cine 1,301 were mutated and were much less pronounced when 
amino acids on the backside of the subdomain were mutated  
(Fig. 1 A). We conclude that a region surrounding amino acid 
residues 1,233 and 1,301 on the proximal half of the Myo2 cargo  
binding domain is critical for anterograde mitochondrial transport. 
This region overlaps with the site critical for vacuolar transport.

Next, we combined the strong myo2(Q1233R) and 
myo2(L1301P) mutations in a single allele, myo2(LQ). Western 
blotting of cell extracts confirmed that the steady-state protein 
levels of Myo2(Q1233R), Myo2(L1301P), and Myo2(LQ) were 
normal (Fig. S2 A). The myo2(LQ) mutant exhibited a more se-
vere phenotype than either single mutant. It has a mild growth 
defect (Fig. S1), >90% of the cells have mitochondrial mor-
phology defects, and 50% of the cells carry buds devoid of 
mitochondria (Fig. 1 B). To analyze the intracellular organization 
of mitochondria and the actin cytoskeleton, we stained mtGFP- 
expressing WT and myo2(LQ) mutant cells with rhodamine-
phalloidin and analyzed them by confocal microscopy. Im-
portantly, the actin cytoskeleton appeared normal in both WT 
and mutant cells (Fig. 1 C). In WT cells, tubular mitochondria 
are evenly distributed and often aligned along actin cables. In 
contrast, myo2(LQ) mutant mitochondria appear clumpy and  
aggregate in the mother cell opposite of the bud (Fig. 1 C). Thus, 
the myo2(LQ) mutant exhibits severe mitochondrial distribution 
and morphology defects.

their ability to interact with actin filaments in vitro (Altmann  
et al., 2008). Ypt11, a rab-like small GTPase, and Mmr1, an 
outer membrane protein of bud-localized mitochondria, were 
suggested to contribute to mitochondrial inheritance by inter-
action with Myo2 (Itoh et al., 2002, 2004; Frederick et al., 2008). 
These observations suggest that Myo2 drives anterograde mito-
chondrial movements in budding yeast and that this activity is 
supported by Ypt11 and Mmr1.

However, the role of Myo2 in mitochondrial transport and 
inheritance is controversial. It has been suggested that deletion 
of YPT11 or mutations that compromise Myo2 have no signifi-
cant effect on the velocity of mitochondrial movement. Instead, 
accumulation of mitochondria in the mother cells of myo2, 
ypt11, and mmr1 mutants might be caused by defects in the  
retention of mitochondria at the bud tip (Boldogh et al., 2004; 
Boldogh and Pon, 2007; Pon, 2008; Peraza-Reyes et al., 2010). 
This scenario suggests an indirect role for Myo2 in mitochon-
drial transport, as the function of Myo2 would be limited to the 
transport of yet unknown retention factors to the bud tip, where  
they would prevent mitochondrial retrograde movement. An alter
native Myo2-independent motility model suggests that mito-
chondria are moved by forces generated by Arp2/3-dependent  
actin polymerization and dynamics localized to the mitochondria 
via Jsn1 and Puf3, which are two members of the Puf family 
of RNA-binding proteins (Boldogh et al., 2001; Fehrenbacher 
et al., 2005; Boldogh and Pon, 2007; García-Rodríguez et al., 
2007; Peraza-Reyes et al., 2010). A complex composed of three 
membrane proteins essential for mitochondrial distribution and 
morphology, Mdm10, Mdm12, and Mmm1, was proposed to 
link mitochondria to cytoskeletal tracks and provide direction-
ality to Arp2/3-dependent movement (Boldogh et al., 2003; 
Boldogh and Pon, 2007; Peraza-Reyes et al., 2010). Thus, it is  
currently not clear whether bud-directed movement and inheri
tance of mitochondria are mediated by Myo2 or by motor- 
independent mechanisms or whether a contribution of both 
pathways is important (Valiathan and Weisman, 2008).

The analysis of the role of Myo2 in mitochondrial trans-
port in vivo has been complicated by the fact that MYO2 is an 
essential gene that is also required for numerous other cellular 
transport processes. Thus, myo2 mutants always retain partial 
activity, and it may be difficult to discern direct from indirect 
effects. Here, we report on the construction of a mitochondria-
specific Myo2 variant that contains a mitochondrial outer mem-
brane anchor in place of the cargo binding domain. Functional 
analyses of this chimeric protein and detection of wild-type (WT) 
Myo2 on the mitochondrial surface by immuno-EM assign an 
essential role to Myo2 as a direct mediator of mitochondrial 
transport in budding yeast.

Results
Mutations in the Myo2 cargo binding 
domain affect mitochondrial distribution 
and morphology
The C-terminal globular cargo binding domain of Myo2 consists 
of two structurally and functionally discernible subdomains. 
The distal half contains binding sites for secretory vesicles and 

 on N
ovem

ber 12, 2011
jcb.rupress.org

D
ow

nloaded from
 

Published August 1, 2011

http://www.jcb.org/cgi/content/full/jcb.201012088/DC1
http://www.jcb.org/cgi/content/full/jcb.201012088/DC1
http://www.jcb.org/cgi/content/full/jcb.201012088/DC1
http://jcb.rupress.org/


475Mitochondrial inheritance by Myo2 • Förtsch et al.

Figure 1.  Mutations in the proximal half of the Myo2 cargo binding domain produce mitochondrial distribution and morphology defects. (A) Ribbon (top) 
and space-filling (middle and bottom) diagrams of the Myo2 tail structure were generated with PyMOL software (PyMOL Molecular Graphics System, 
version 1.3; Schrödinger). The locations of mutated amino acid residues are indicated. Residues L1301 and Q1233 mutated in the myo2(LQ) allele are 
highlighted in red. Residue V1236 is not indicated, as it is hidden in the interior of the domain. Red, >20% buds devoid of mitochondria; orange, 10–20% 
buds devoid of mitochondria; yellow, <10% buds devoid of mitochondria. (B) Cells were grown in yeast extract/peptone/dextrose (YPD) medium to the 
logarithmic growth phase and incubated for 3 h at the indicated temperature. Mitochondrial morphology (top) and buds devoid of mitochondria (bottom) 
were quantified at ambient temperature by fluorescence microscopy of mtGFP-expressing cells. Cells containing branched tubular mitochondria in the ab-
sence of any mitochondrial aggregation or fragmentation were classified as WT-like mitochondria. Quantifications are mean values from three independent 
experiments (n = 100), and error bars indicate standard deviations. (C) Cells expressing mtGFP were grown to the logarithmic growth phase in glucose-
containing minimal medium, fixed, stained with rhodamine-phalloidin, and observed by confocal fluorescence microscopy. (left to right) Bright field image, 
maximum intensity projection of GFP fluorescence, maximum intensity projection of rhodamine fluorescence, and merged image generated with bioView3D 
software (The Center for Bio-Informatics, University of California, Santa Barbara, CA). Bars, 5 µm.
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Figure 2.  Mitochondrial inheritance defects in myo2 mutants are rescued by a mitochondria-specific Myo2 variant. (A) Domain structure of WT and 
mutant Myo2 proteins. The numbers specify amino acid residues. Mutations are indicated by asterisks. (B) A schematic drawing of expected binding of 
Myo2 variants to mitochondria. (left) The WT Myo2 is thought to bind to a yet unidentified receptor (X) on the mitochondrial surface. (middle) Mutations 
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in the Myo2 cargo binding domain (asterisks) are expected to weaken the interaction of Myo2 with mitochondria. (right) Myo2-Fis1 is directly inserted 
into the mitochondrial outer membrane through the Fis1 tail anchor and is expected to rescue cargo binding-defective myo2 mutants. (C) Cells expressing 
mtGFP were grown in synthetic dextrose minimal medium to the logarithmic growth phase, incubated for 3 h at the indicated temperature, and analyzed 
by fluorescence microscopy at ambient temperature. (left) GFP fluorescence. (right) Differential interference contrast (DIC) image. Bar, 5 µm. (D) Cells were 
grown and analyzed as in C, and buds devoid of mitochondria were quantified in cells carrying large buds. Quantifications are mean values from three 
independent experiments (n = 100), and error bars indicate standard deviations.

 

A mitochondrial membrane anchor 
replacing the Myo2 cargo binding domain 
restores mitochondrial distribution toward 
the bud in myo2 mutants
The accumulation of mitochondria in the mother cell indicates 
that myo2 mutations shift the balance of bidirectional antero-
grade and retrograde mitochondrial movements toward retro-
grade transport. This observation is compatible with both the 
mitochondrial motor model, which predicts that anterograde 
movements are impaired as a direct consequence of impaired 
Myo2 binding to mitochondria, and the retention factor model, 
which predicts that mutations of the Myo2 cargo binding  
domain impair transport of retention factors to the bud tip and 
increase the frequency of mitochondrial retrograde movement.

To discriminate between these models, we replaced the 
cargo binding domain of Myo2 (residues 1131–1574) with the 
C-terminal transmembrane segment of the tail-anchored mito
chondrial outer membrane protein, Fis1 (residues 129–155;  
Fig. 2 A). This Fis1 segment is sufficient to anchor foreign 
proteins in the mitochondrial outer membrane (Kemper et al., 
2008). It can be predicted that the chimeric protein Myo2-Fis1 
is able to rescue myo2 mutants that are directly impaired in 
binding of the motor to mitochondria but not the transport of 
retention factors to the bud (Fig. 2 B).

The myo2-fis1 allele was placed under control of the MYO2 
promoter in low (myo2-fis1(ARS-CEN)) or multicopy (myo2-
fis1(2µ)) plasmids. Intriguingly, the majority of myo2(Q1233R), 
myo2(L1301P), and myo2(LQ) mutant cells expressing Myo2-
Fis1 from low copy plasmids contained WT-like mitochondria or 
exhibited only mild mitochondrial morphology defects (Fig. 2 C  
and Table S2), suggesting that the balance of anterograde and  
retrograde mitochondrial movements was restored. Expression of 
Myo2-Fis1 from a multicopy plasmid led to an accumulation of 
mitochondria in the bud (or at the bud neck in large-budded cells) 
and thus shifted the balance of bidirectional movements toward 
the anterograde direction (Fig. 2 C and Table S2). Whereas >95% 
of WT cells contained mitochondria in their buds under all condi-
tions, up to 60% of large-budded myo2 mutant cells (myo2(LQ) 
grown at 37°C) carried buds devoid of mitochondria. Partitioning 
of mitochondria to the bud was almost completely restored by  
expression of Myo2-Fis1 (Fig. 2 D). We conclude that mito
chondrial distribution and morphology defects in myo2(Q1233R), 
myo2(L1301P), and myo2(LQ) mutants are not caused by the 
absence or mislocalization of retention factors but are a direct 
consequence of impaired binding of Myo2 to mitochondria.

Organelle specificity of myo2(LQ) and 
myo2-fis1 alleles
To test whether the organellar distribution and morphology de-
fects in the myo2(LQ) mutant are specific for mitochondria, we 

analyzed the distribution of other known Myo2 cargo organ-
elles. Myo2-dependent polarized transport of secretory vesicles 
can be visualized by the accumulation of Sec4 at the tips of 
small buds (Schott et al., 1999), polarized distribution of Golgi 
cisternae in rapidly growing cells (Rossanese et al., 2001) can 
be examined with the late Golgi protein Sft2 (Conchon et al., 
1999), and distribution of peroxisomes can be observed with 
fluorescent proteins carrying a PTS1 peroxisomal targeting sig-
nal (Smith et al., 2002; Fagarasanu et al., 2009). We found that 
the localization of secretory vesicles, Golgi, and peroxisomes to 
small buds was not altered in myo2(LQ) cells in comparison 
with the WT (Fig. 3 A). Thus, we conclude that the myo2(LQ) 
allele specifically affects the distribution of mitochondria and 
vacuoles. This is consistent with the fact that the region of Myo2 
devoted to binding of secretory vesicles and peroxisomes is in 
the distal subdomain of the Myo2 tail (Pashkova et al., 2006; 
Fagarasanu et al., 2009). This region is distant from the proxi-
mal residues Q1233 and L1301, which appear to be critical for 
the transport of vacuoles and mitochondria (Pashkova et al., 
2006; Altmann et al., 2008).

Mutations of amino acid residues to proline have the po-
tential to perturb the structure of protein domains over long  
distances. However, the myo2(L1301P) mutation disrupts bind-
ing of Myo2 to its vacuolar receptor, Vac17, but not to Kar9 or 
Smy1, suggesting that myo2(L1301P) does not globally disrupt 
the Myo2 cargo binding domain (Pashkova et al., 2005a). As the 
intracellular distribution of secretory vesicles, Golgi, and per-
oxisomes is normal in myo2(LQ) cells, we conclude that the 
distal half of the Myo2 cargo binding domain is largely intact.

To date, there is no evidence for a role of Myo2 in ER 
inheritance. Accordingly, we found that the distribution of an 
ER marker carrying a signal sequence, a GFP moiety, and an 
ER retention signal (Prinz et al., 2000) was normal in myo2(LQ) 
cells (Fig. 3 B). As the ER and mitochondria are known to form 
relatively stable contacts (Kornmann et al., 2009), we asked 
whether inheritance of these organelles is coupled. It was al-
ready shown that myo4 mutant cells lacking cortical ER in 
the bud show normal inheritance of mitochondria (Estrada  
et al., 2003). Vice versa, we observed that myo2(LQ) mutant 
cells lacking mitochondria in the bud show normal inheritance 
of the ER (Fig. 3 C). As the myo2(LQ) allele affects the inheri-
tance of both mitochondria and vacuoles (Table S1), we tested  
whether the inheritance of these organelles is coupled. We ob-
served that the expression of Myo2-Fis1 in myo2(LQ) cells 
shifts the distribution of mitochondria toward the bud, whereas 
vacuoles remain in the mother cell (Fig. 3 D). These observa-
tions suggest that the inheritance of mitochondria is not coupled 
to the ER or vacuoles.

We also tested whether the activity of Myo2-Fis1 is spe-
cific for mitochondria. To confirm mitochondrial targeting,  
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Figure 3.  Organelle specificity of myo2 alleles. (A) Cells were analyzed as in Fig. 2 C. (left) DIC of a representative cell. (middle) Maximum intensity 
projection of a z stack consisting of 10 focal planes. (right) Merge images. (B) Cells expressing a GFP marker for the ER were analyzed as in A with the 
exception that fluorescence images represent a single focal plane that is focused on the bud. Arrows indicate bud-localized ERs. (A and B) Quantifications 
are mean values from three independent experiments (n = 100), and error bars indicate standard deviations. (C) Cells coexpressing mtCherry and ER GFP 
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were analyzed as in A. (right) Merged images of mCherry and GFP fluorescence. Arrows indicate bud-localized ERs. (D) Cells expressing mtGFP were 
stained with the vacuolar marker CMAC and analyzed as in A. (right) Merged images of GFP and CMAC fluorescence and DIC. (E) Cells coexpressing 
Myo2-GFP-Fis1 and mtCherry were grown to the late logarithmic growth phase and analyzed as in A. (right) A merged image of GFP and mCherry fluores
cence. (C–E) Fluorescence images are maximum intensity projections of z stacks consisting of 10 focal planes. Bars, 5 µm.

 

we constructed a Myo2-GFP-Fis1 variant that carries a GFP 
moiety inserted between the Myo2 and Fis1 segments. This 
construct was as efficient as the Myo2-Fis1 chimera in shift-
ing mitochondrial distribution toward the bud (Fig. S2 B).  
Fluorescence microscopy of WT cells expressing Myo2-GFP-
Fis1 revealed extensive colocalization of the GFP signal with 
mtCherry. Although most of the Myo2-GFP-Fis1 signal was 
concentrated in bud-localized mitochondria of polarized cells 
(Fig. S2 C), it was evenly distributed on the mitochondrial 
network in nonpolarized cells (Fig. 3 E), indicating correct in-
sertion of the chimeric protein in the mitochondrial outer mem-
brane. Expression of Myo2-Fis1 did not affect the intracellular 
distribution of secretory vesicles, Golgi, ER, and vacuoles (Fig. 3, 
A, B, and D). Also, in the case of peroxisomes, the percentage  
of organelle-containing buds was not changed by Myo2-Fis1 
expression (Fig. 3 A). However, in some Myo2-Fis1–expressing 
cells, a shift of the intracellular distribution of peroxisomes 
from the mother cell toward the bud tip or the bud neck could be 
observed (4% of the cells in a MYO2 background and 18% 
of the cells in a myo2(LQ) background). This can be explained 
by the fact that some Fis1 is targeted to peroxisomes (Motley 
et al., 2008). In summary, the expression of Myo2-Fis1 has a 
major effect on the intracellular distribution of mitochondria, a 
minor effect on peroxisomes, and no detectable effect on secre-
tory vesicles, Golgi, ER, and vacuoles.

Entry of mitochondria into the bud is 
impaired in myo2 mutants
We asked whether anterograde movement of mitochondria is 
directly compromised by mutation of the Myo2 cargo binding 
domain. To test this, we analyzed WT, myo2(LQ), and myo2-
fis1(2µ) cells by time-resolved 3D fluorescence microscopy 
in 16–27 cells per strain. We recorded z stacks of mtGFP- 
expressing cells by epifluorescence microscopy every 2 s and 
processed the images by deconvolution and maximum intensity 
projection. In WT cells, mitochondria were observed to undergo 
bidirectional movements both in the mother cell and the bud. 
myo2(LQ) mitochondria were motile, but their movements were 
restricted to the mother cell, and mitochondria rarely entered 
the bud. In contrast, myo2-fis1(2µ) mitochondria accumulated in 
the bud, and one or two long tubules were typically fixed at the 
opposite pole in the mother cell (Fig. S3 and Videos 1–3). These 
observations demonstrate that Myo2 is required for anterograde 
movement and entry of mitochondria into the bud.

It has been argued that Myo2 is not directly involved in 
anterograde mitochondrial movement because truncation of the 
Myo2 lever arm, predicted to attenuate transport velocity, was 
not found to have an effect on mitochondrial motility (Boldogh 
et al., 2004; Boldogh and Pon, 2007; Peraza-Reyes et al., 2010). 
We considered the possibility that factors other than motor- 
dependent velocity may also be important, such as cargo size, 

number of motor molecules, ATP supply, etc. Based on our data, 
we reasoned that mitochondrial movements in the myo2-fis1(2µ) 
strain faithfully reflect Myo2-dependent mitochondrial velocity 
in vivo. If mitochondrial movements in WT and myo2(LQ) are 
similarly dependent on Myo2, they should occur with similar 
velocity. To test this, we used datasets obtained in the time- 
resolved 3D fluorescence microscopy experiment to determine 
mitochondrial velocities in WT, myo2(LQ), and myo2-fis1(2µ) 
cells. We reconstructed tracks of mitochondrial tips and measured 
the velocity in 2D maximum intensity projections. The velocity of 
WT mitochondria was found to range from <0.1 to 0.9 µm/s with a 
strong bias toward slow motions (Fig. 4). These values are similar 
to previously reported observations (Fehrenbacher et al., 2004). 
Importantly, mitochondrial velocity was not significantly differ-
ent in myo2(LQ) and myo2-fis1(2µ) cells (Fig. 4), suggesting 
that mitochondrial movements occur by the same mechanisms 
in all three strains.

Mitochondrial distribution and morphology 
defects in cells lacking Mmm1, Mdm10, 
Mdm12, or Mdm34 are not rescued  
by Myo2-Fis1
Mmm1, Mdm10, Mdm12, and Mdm34 are required for main-
tenance of normal mitochondrial distribution and morphol-
ogy, cells lacking any one of these proteins contain spherical 
or clumped mitochondria that are immotile, buds are frequently 
devoid of mitochondria, and the mitochondrial genome is lost 

Figure 4.  Mitochondrial velocity is similar in WT, myo2(LQ), and myo2-fis1  
strains. MYO2 WT, myo2(LQ) mutant, and MYO2 cells expressing  
Myo2-Fis1 from a multicopy plasmid (myo2-fis1(2µ)) were grown to logarith-
mic growth phase in synthetic dextrose minimal medium and analyzed by  
time-resolved 3D fluorescence microscopy. Z stacks of mtGFP-expressing  
cells were recorded every 2 s and processed by deconvolution and maxi-
mum intensity projection. Representative cells are shown in Fig. S3 and 
Videos 1–3. A total number of 41 tracks of mitochondrial tips consisting 
of 276 time points were reconstructed in 27 WT cells, 50 tracks consisting of 
341 time points in 25 myo2(LQ) mutant cells, and 28 tracks consisting of  
123 time points in 16 myo2-fis1(2µ) mutant cells. For each time point, the 
2D velocity was determined and expressed as a percentage of total mito-
chondrial movements for each strain.
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that the failure of Myo2-Fis1 to rescue these mutants cannot be 
ascribed to a protein import defect. These observations suggest 
that defects in anterograde motility are not the primary cause for 
the mitochondrial distribution and morphology phenotypes in 
mmm1, mdm10, mdm12, and mdm34 mutants.

myo2(Q1233R), myo2(L1301P), and 
myo2(LQ) alleles interact genetically  
with ypt11
Ypt11 is a small rab-type GTPase that has been suggested to 
cooperate with Myo2 in mitochondrial inheritance. It interacts 
with the tail domain of Myo2 in two-hybrid and coimmuno
precipitation experiments, and certain myo2 mutant alleles 
genetically interact with the ypt11 deletion allele (Itoh et al., 
2002). Overexpression of Ypt11 leads to the accumulation of mito
chondria in the bud, suggesting that Ypt11 acts positively on antero
grade mitochondrial movement (Itoh et al., 2002; Frederick 
et al., 2008).

at high frequency (Burgess et al., 1994; Sogo and Yaffe, 1994; 
Berger et al., 1997; Boldogh et al., 1998, 2003; Dimmer et al., 
2002; Youngman et al., 2004). It has been proposed that Mmm1, 
Mdm10, and Mdm12 link mitochondria to the cytoskeleton and 
contribute together with Myo2-independent forces to directed 
mitochondrial movements (Boldogh et al., 2003; Boldogh and 
Pon, 2007; Peraza-Reyes et al., 2010). We asked whether Myo2-
Fis1 rescues mitochondrial distribution and morphology defects 
in mmm1, mdm10, mdm12, and mdm34 mutants. Although 
WT cells transformed with the myo2-fis1(2µ) plasmid showed 
an accumulation of mitochondria in the bud, this could not be 
observed upon expression of Myo2-Fis1 in mmm1, mdm10, 
mdm12, and mdm34 mutants. The majority of mutant cells 
contained abnormal mitochondria, and a significant number of 
cells carried buds devoid of mitochondria both in the presence 
and absence of the myo2-fis1 plasmids (Fig. 5). Myo2-GFP-Fis1 
colocalized with a mitochondrial matrix marker in mmm1, 
mdm10, mdm12, and mdm34 cells (Fig. S2 D), suggesting 

Figure 5.  Lack of Mmm1, Mdm10, Mdm12, or Mdm34 is not compensated by Myo2-Fis1. (A) Cells expressing mtGFP were grown in synthetic dextrose 
minimal medium to the logarithmic growth phase and analyzed by fluorescence microscopy. (left) DIC image. (middle) GFP fluorescence. (right) Merged 
image. Bar, 5 µm. (B) Mitochondrial inheritance defects were quantified by counting buds devoid of mitochondria. (C) Mitochondrial morphology defects 
were quantified. (B and C) Quantifications are mean values from three independent experiments (n = 100), and error bars indicate standard deviations.
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as the URA3 plasmid encoding WT MYO2 was maintained  
(Fig. 6 A). Cells were cured from the MYO2 plasmid by counter
selection against the URA3 marker on 5-fluoroorotic acid (5-FOA)–
containing media. As expected, loss of this plasmid is lethal in 
control strains transformed with an empty vector and in strains  
transformed with myo2-fis1(2µ) plasmids (Fig. 6 A). The latter  

We tested whether the ypt11 deletion genetically inter-
acts with mitochondria-specific myo2 mutant alleles. YPT11 
WT and ypt11 strains carrying chromosomal deletions of the 
MYO2 gene and a WT copy on a plasmid with a URA3 marker 
were transformed with plasmids expressing myo2(LQ) and/or 
myo2-fis1(2µ). All strains were able to grow like WT as long  

Figure 6.  Mutant alleles of the MYO2 gene 
genetically interact with ypt11. (A) Growth 
was analyzed for strains carrying a chro-
mosomal myo2::kanMX4 deletion and the 
MYO2 WT allele on a plasmid with a URA3 
marker together with empty vector (), a 
myo2(LQ) plasmid, a myo2-fis1(2µ) plas-
mid, or both the myo2(LQ) plasmid and the 
myo2-fis1(2µ) plasmid either in a YPT11 WT 
background (top) or a ypt11 deletion back-
ground (bottom). Cells were grown overnight 
in synthetic dextrose minimal medium con-
taining uracil to allow for loss of the URA3-
based MYO2 plasmid. Then, 10-fold serial 
dilutions were spotted on synthetic dextrose 
plates lacking uracil (left) to allow growth of 
cells containing the MYO2 WT plasmid or 
on synthetic dextrose plates containing uracil 
and 5-FOA (right) to select for cells that have 
lost the MYO2 WT plasmid. SD  Ura plates 
were incubated for 3 d at 30°C, and SD + 
Ura/5-FOA plates were incubated for 5 d at 
30°C. (B) Cells were grown and analyzed as 
in Fig. 2 D. Results are from the same series 
of experiments. (C) ypt11 cells carrying a 
chromosomal deletion of the MYO2 gene 
contained plasmids expressing WT (MYO2), 
myo2(Q1233R), or myo2(L1301P). Cells ex
pressing GFP-Sft2 were grown in synthetic 
dextrose minimal medium to the logarithmic 
growth phase and analyzed by fluorescence 
microscopy. (left) DIC image of a representa-
tive cell. (right) Maximum intensity projection 
of a z stack consisting of 10 focal planes.  
(D) Cells expressing ER GFP were analyzed 
as in C with the exception that fluorescence 
images represent a single focal plane that is 
focused on the bud. (B–D) Quantifications are 
mean values from three independent experi-
ments (n = 100), and error bars indicate stan-
dard deviations. Bars, 5 µm.
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evenly distributed in mother and daughter cells. The distribu-
tion of late Golgi was very similar in ypt11/myo2(Q1233R) 
and ypt11/myo2(L1301P) cells compared with ypt11 single 
mutants (Fig. 6 C), suggesting that there are no synthetic de-
fects in Golgi inheritance. Similarly, cortical ER was found in 
>90% of small buds of myo2 mutant cells in the presence or 
absence of YPT11 (Figs. 3 B and 6 D). These observations sug-
gest that the ypt11 allele and the mutation myo2(Q1233R) or 
myo2(L1301P) produces synthetic mitochondrial phenotypes, 
whereas the inheritance of Golgi and ER is similar to that of 
ypt11 single mutants.

Deletion of the MMR1 gene does 
not produce synthetic mitochondrial 
phenotypes in myo2(LQ)
Mmr1 is a protein of the mitochondrial outer membrane that 
was identified as a high copy suppressor of myo2-573 (Itoh  
et al., 2004). Mmr1 is preferentially localized in mitochondria 
in the bud, forms a complex with Myo2, and promotes mito-
chondrial accumulation in the bud when overexpressed (Itoh  
et al., 2004; Frederick et al., 2008). It was proposed that Mmr1 
and Ypt11 act independently of each other because the accumu-
lation of mitochondria in buds upon Mmr1 overexpression does 
not require Ypt11 and vice versa (Itoh et al., 2004).

To test whether the mmr1 deletion genetically interacts 
with myo2(LQ), we constructed a double mutant and examined 
its phenotype. mmr1/myo2(LQ) cells are viable, and the growth 
defect of the myo2(LQ) single mutant is not enhanced by dele-
tion of the MMR1 gene (Fig. 7 A). Mitochondrial morphology 
in mmr1 cells is almost like WT, whereas mmr1/myo2(LQ)  
mutant mitochondria are very similar to the myo2(LQ) single 
mutant (Fig. 7 B). We consider it unlikely that Mmr1 consti-
tutes the mitochondrial receptor for Myo2 because mmr1 cells 
exhibit only a mild mitochondrial inheritance phenotype. Con-
sistent with the observations by Itoh et al. (2004), we found 
a significant mitochondrial inheritance defect in small buds of 
mmr1 cells. This was more pronounced in myo2(LQ) mutants 
and not significantly further enhanced in mmr1/myo2(LQ) 

result indicates that the mitochondria-specific Myo2-Fis1 chi-
mera does not rescue essential functions of Myo2 in transport 
of other cell organelles and secretory vesicles. Cells contain-
ing the myo2(LQ) plasmid or the myo2(LQ) plasmid together 
with myo2-fis1(2µ) showed mild growth defects after loss of 
MYO2 in the YPT11 WT background (Fig. 6 A). However, the 
myo2(LQ) mutation is lethal in combination with the ypt11 
allele (Fig. 6 A). This is consistent with the observations by 
Itoh et al. (2002), who reported synthetic lethality of ypt11 
and the myo2-573 allele, which has six mutations in the 
Myo2 tail. Synthetic lethality can occur by the combination 
of two nonessential mutations either in different pathways 
or in the same pathway (Boone et al., 2007). As Myo2 and 
Ypt11 physically interact with each other (Itoh et al., 2002), 
we consider it likely that they function in the same pathway. 
Intriguingly, viability of the ypt11/myo2(LQ) double mu-
tant was restored by expression of Myo2-Fis1 (Fig. 6 A). This 
suggests that lethality of ypt11/myo2(LQ) can be ascribed 
to a lack of mitochondrial transport. We propose that Myo2-
dependent mitochondrial transport is essential for viability 
in yeast.

Next, we tested whether the lack of Ypt11 produces synthetic 
mitochondrial phenotypes in the viable ypt11/myo2(Q1233R) 
and ypt11/myo2(L1301P) double mutants. We observed that 
defects of mitochondrial morphology and inheritance were 
exacerbated by deletion of the YPT11 gene in myo2(Q1233R) 
and myo2(L1301P) mutants (Fig. 6 B and Table S2). Up to 
90% of ypt11/myo2(L1301P) cells carried buds devoid of 
mitochondria, compared with only 15% in myo2(L1301P) mu-
tants in a YPT11 WT background. Mitochondrial distribution 
and morphology defects could be efficiently rescued by the 
expression of Myo2-Fis1 (Fig. 6 B and Table S2). As ypt11 
cells show a loss of polarized Golgi distribution (Arai et al., 
2008) and a mild defect in the distribution of the ER (Buvelot  
Frei et al., 2006), we tested whether there are synthetic pheno
types for these organelles also. Consistent with the observa-
tions by Arai et al. (2008), we observed that late Golgi markers 
lost their polarized distribution in ypt11 cells; i.e., they were 

Figure 7.  mmr1/myo2(LQ) double mu-
tant cells resemble myo2(LQ) single mutants. 
(A) 10-fold serial dilutions of cell suspensions 
were spotted on yeast extract/peptone/ 
dextrose plates and incubated at 30°C for 3 d.  
(B) Cells expressing mtGFP were grown at 
the indicated temperature in yeast extract/
peptone/dextrose medium to the logarithmic 
growth phase and analyzed by fluorescence 
microscopy at ambient temperature. (left) DIC 
image. (right) GFP fluorescence. Bar, 5 µm.  
(C) Cells were grown as in B, and small buds 
devoid of mitochondria were quantified. Quan-
tifications are mean values from three indepen-
dent experiments (n = 100), and error bars 
indicate standard deviations.
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double mutants (Fig. 7 C). Epistasis can be defined as a situation 
in which the activity of one gene masks effects at another locus, 
allowing inferences about the order of gene action (Boone et al., 
2007). As the phenotype of the mmr1/myo2(LQ) double mutant 
is similar to that of the myo2(LQ) single mutant, we conclude 
that the myo2(LQ) allele is epistatic to mmr1. This suggests 
that Myo2 acts before Mmr1 in mitochondrial inheritance.

Myo2 is present on the  
mitochondrial surface
The evidence for a presence of Myo2 on mitochondria has been 
only indirect so far. For example, preincubation of purified mito
chondria with antibodies against Myo2 abolishes binding of 
mitochondria to actin filaments in vitro, suggesting that the 
presence of Myo2 on mitochondria is important for this process 
(Altmann et al., 2008). However, immunofluorescence and GFP 
tagging studies have localized Myo2 mainly to cellular bud tips 
and bud necks (Lillie and Brown, 1994; Huh et al., 2003). Un-
fortunately, weak fluorescence signals and promiscuous binding  
of Myo2 to several cargoes do not allow a colocalization with  
mitochondria by fluorescence microscopy (unpublished data). 
Therefore, we tested a mitochondrial localization of Myo2 by  
immuno-EM. Mitochondria were isolated from WT cells by dif-
ferential centrifugation and further purified by sucrose density 
gradient centrifugation. Purified mitochondria were fixed in 
glutaraldehyde and embedded in London Resin gold resin, and 
ultrathin sections were incubated with affinity-purified Myo2 
antibodies and gold-coupled secondary antibodies and analyzed 
by transmission EM. Gold labeling was observed on the surface 
of organelles that could be clearly identified as mitochondria by 
their double membranes (Fig. 8 A). To test for the specificity of 
immunogold labeling, we extracted peripherally bound mito-
chondrial proteins with high salt or removed surface-exposed 
proteins by digestion with trypsin. These treatments are ex-
pected to reduce the number of Myo2 antigens per organelle. 
Finally, we isolated mitochondria from a TetO7-myo2 strain that 
carries the MYO2 gene under control of a titratable promoter. 
Growth in the absence of doxycycline is expected to result in an 
overexpression of MYO2, whereas an addition of doxycycline 
to the medium represses the promoter and leads to depletion of 
Myo2 (Mnaimneh et al., 2004; Altmann et al., 2008). We ob-
served that salt extraction, trypsin treatment, and repression of 
the TetO7-myo2 allele led to a reduction of labeling, whereas 
mitochondria isolated from Myo2-overexpressing cells showed 
excess labeling (Fig. 8 B and Table S3). We conclude that label-
ing is specific for Myo2 and that Myo2 is present on the surface 
of WT mitochondria.

Discussion
We constructed a novel myo2 allele that has a selective and 
severe mitochondrial distribution phenotype, myo2(LQ), and 
demonstrate that this can be rescued by the expression of a  
mitochondria-specific motor, Myo2-Fis1, pointing to a direct role 
of Myo2 in bud-directed mitochondrial transport. Furthermore, 
synthetic lethality of the ypt11/myo2(LQ) double mutant is res-
cued by Myo2-Fis1. This suggests that mitochondrial inheritance 

cannot be maintained by Myo2-independent transport mecha-
nisms. A direct role of Myo2 in mitochondrial transport is further 
supported by its detection on isolated WT mitochondria by 
immuno-EM. We propose that Myo2 mediates anterograde 
mitochondrial transport in yeast and that this activity is essen-
tial for viability.

Figure 8.  Myo2 is present on mitochondria. (A) Mitochondria were  
isolated from WT cells, purified by sucrose density centrifugation, and  
analyzed by postembedding immuno–EM using affinity-purified anti-
bodies against Myo2. Bars, 100 nm. (B) WT mitochondria were either left 
untreated (WT), extracted with high salt (WT + KCl), or subjected to trypsin 
digestion (WT + trypsin). Mitochondria were purified from the TetO7-myo2 
strain grown in the absence (TetO7-myo2  Dox) or presence (TetO7-myo2 +  
Dox) of doxycycline. Mitochondria were analyzed by immuno–EM as  
in A. Between 106 and 341 mitochondria per sample were analyzed for the 
presence of gold particles. The number of gold particles per organelle was 
related to the untreated WT sample that was always analyzed in the same 
experiment. Results are mean values of two independent labeling experi-
ments (Table S3). Individual data points are represented by circles.
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proteins retain some function in mitochondrial distribution, 
as a complete block of mitochondrial inheritance would be  
lethal. We propose that the frequency and/or distance of mito-
chondrial movements, but not their velocity, is compromised by 
mutations in the cargo binding domain in myo2(L1301P) and 
myo2(LQ) mutants.

Genetic evidence presented here and in other studies (Itoh 
et al., 2002, 2004; Boldogh et al., 2004; Frederick et al., 2008; 
Kornmann et al., 2009) allows us to propose a pathway of mito
chondrial inheritance consisting of three sequential steps  
(Fig. 9). The first step of this pathway requires Mmm1, Mdm10, 
Mdm12, and Mdm34. Recently, these proteins were found to 
form a complex that tethers mitochondria with the ER and 
therefore was termed the ER-mitochondria encounter structure 
(ERMES; Kornmann et al., 2009). This complex is thought to 
facilitate interorganelle calcium and membrane lipid exchange 
(Kornmann et al., 2009; Wiedemann et al., 2009). These func-
tions are expected to be independent of mitochondrial inter-
actions with actin filaments. Here, we observed that mitochondrial 
distribution defects in ERMES complex mutants cannot be rescued 
by the expression of Myo2-Fis1. This suggests that Mmm1, 
Mdm10, Mdm12, and Mdm34 are required to maintain trans-
portable mitochondrial units that are a prerequisite for directed 
transport along the cytoskeleton.

The second step of the mitochondrial inheritance pathway 
is bud-directed anterograde movement powered by Myo2. The 
complex formation of Ypt11 and Myo2 (Itoh et al., 2002) to-
gether with the synthetic mitochondrial phenotypes suggest that 
Ypt11 and Myo2 are required at the same step. Targeting of 
myosin V motors to their cargo organelles is often facilitated 
by rab-type GTPases (Hammer and Wu, 2002; Seabra and  
Coudrier, 2004; Akhmanova and Hammer, 2010). For example, 
Ypt11 supports binding of Myo2 to Ret2, a subunit of the COPI 
coatomer on Golgi compartments. Recruitment of Myo2 by this 
mechanism is important for bud-directed transport and inheri-
tance of the Golgi (Arai et al., 2008). Our genetic observations 
support a model suggesting that Ypt11 cooperates with Myo2 in 
mitochondrial inheritance in a similar manner. In this scenario, 
Ypt11 might regulate binding of Myo2 to a yet unknown recep-
tor on the mitochondrial surface. Binding of Myo2 to mito
chondria may be impaired, albeit not blocked completely, by 
deletion of the YPT11 gene or the mutation of the Myo2 cargo 
binding domain. A combination of both mutations is expected 
to weaken the interaction of the motor with the organelle even 
further. As a consequence, anterograde mitochondrial transport 
breaks down, resulting in a block of mitochondrial inheritance 
and a loss of viability. This lethal phenotype can be rescued by 
an expression of Myo2-Fis1 that bypasses the requirements of 
Ypt11 and an intact Myo2 cargo binding domain because it 
ensures mitochondrial targeting of Myo2 by the mitochondrial 
protein import machinery.

The third, and still rather hypothetical, step of the mito-
chondrial inheritance pathway is the retention of mitochondria 
in the bud. Mmr1 is an obvious candidate for this function, as 
its mRNA is localized to bud tips (Shepard et al., 2003), and the 
protein is highly enriched in bud-localized mitochondria (Itoh 
et al., 2004). Because most mmr1 cells contain mitochondria 

A function of Myo2 as a mitochondrial motor protein 
has repeatedly been questioned (Boldogh et al., 2004; Boldogh 
and Pon, 2007; Pon, 2008; Peraza-Reyes et al., 2010). It was 
argued that mutations of Myo2 have no effect on the velocity 
of mitochondrial movement. In particular, truncation of the 
Myo2 lever arm in the myo2-6IQ mutant decreases the mean 
velocity of secretory vesicles from 3 to 0.3 µm/s (Schott et al., 
2002), whereas mitochondria were observed to move at a speed 
of 0.18 µm/s both in WT and myo2-6IQ cells (Boldogh  
et al., 2004). However, most mitochondrial movements that we 
observed were rather slow (<0.1 to 0.2 µm/s). As the speed of 
vesicles in myo2-6IQ cells is still higher than that of mito-
chondria in WT cells, the velocity of mitochondria is appar-
ently not solely determined by the speed of the motor. Thus, 
measurements of velocities in myo2 mutants cannot be used to 
rule out Myo2 as a mitochondrial motor in yeast (Frederick and 
Shaw, 2007). Furthermore, it was suggested that the function of 
Myo2 is limited to the transport of mitochondrial retention fac-
tors to the bud (Boldogh et al., 2004; Boldogh and Pon, 2007; 
Pon, 2008; Peraza-Reyes et al., 2010). In this case, it would 
be expected that bud-directed Myo2-independent mitochon-
drial movements are not impaired in myo2 mutants. We have 
previously examined mitochondrial motility in myo2(L1301P) 
cells over relatively long time periods at rather low temporal 
resolution (one z stack every 3 min over a total time of 30 min; 
Altmann et al., 2008). Here, we observed mitochondrial move-
ments in myo2(LQ) cells with high temporal resolution (one 
z stack every 2 s over a total time of 1 min). In both cases, bidirec
tional mitochondrial movements could be observed in WT 
mother cells and buds. In contrast, mitochondria rarely passed 
the bud neck in myo2 mutants. We conclude that mutations in 
the cargo binding domain of Myo2 directly impair bud-directed 
mitochondrial movement. It is expected that mutant Myo2 

Figure 9.  Model of mitochondrial inheritance in yeast. Anterograde 
movement is powered by Myo2 that is bound to mitochondria via a yet 
unknown receptor protein (X). The black square symbolizes hypothetical 
mitochondrial cortex anchors. See Discussion for details.
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promoter was subcloned from pRS416-myo2-fis1 into the ClaI and SacI 
sites of pRS413 (Sikorski and Hieter, 1989) and pRS426 (Christianson 
et al., 1992) and the XhoI and SacI sites of pRS425 (Christianson et al., 
1992). For construction of a Myo2-GFP-Fis1–expressing plasmid, pRS426-
myo2-GFP-fis1, the GFP coding region was amplified from an mtGFP cas-
sette using primers Myo2GFPfis1fwd and Myo2GFPfis1rev and cloned 
into the NheI site of pRS426-myo2-fis1. To obtain pYX142-GFP-Sft2 and 
pYX142-GFP-Sec4, the SFT2 and SEC4 coding sequences were amplified  
from genomic DNA using primers GFPSFT2fwd and GFPSFT2rev or  
GFPSEC4fwd and GFPSEC4rev, respectively, and cloned into the XhoI and 
BamHI sites of pYX142-GFPFIS1 (provided by D. Rapaport, University of 
Tübingen, Tübingen, Germany). Plasmid pGEX-4T-1 (Pashkova et al., 2006) 
was used for expression of the Myo2 tail domain in Escherichia coli for 
antibody production.

Yeast strains
Growth and manipulation of yeast strains were performed according to 
standard procedures (Sherman, 1991; Burke et al., 2000). The experiments 
shown in Figs. 1–7 and S1–3, Videos 1–3, and Tables S1 and S2 were 
performed with yeast strains isogenic to BY4741, BY4742, and BY4743 
(Brachmann et al., 1998). To construct yeast strains expressing mutant myo2 
alleles, a haploid strain that contained a genomic myo2::kanMX4 deletion 
allele and the MYO2 WT allele on plasmid pRS416-MYO2 (Altmann et al.,  
2008) served as a recipient for pRS413-MYO2–derived plasmids con-
taining myo2 mutant alleles. After counterselection against pRS416-MYO2  
by growth on 5-FOA–containing medium, strains were obtained that ex-
pressed myo2 alleles from single-copy plasmids under control of the endog
enous MYO2 promoter. Double mutants were constructed by mating, 
sporulation, and tetrad dissection. For immuno-EM, mitochondria were iso-
lated from the WT strain D273-10B (Sherman, 1964) and the TetO7-myo2 
strain containing a titratable promoter allele (Mnaimneh et al., 2004).

Staining of cellular structures
Plasmids expressing mtGFP or mtCherry were used to visualize mitochon-
dria, a plasmid expressing GFP-Sec4 was used to visualize secretory vesi-
cles, a plasmid expressing GFP-Sft2 was used to label late Golgi cisternae, 
a plasmid expressing peroxisomal-targeted DsRed was used to label per-
oxisomes, and a plasmid expressing ER-targeted GFP was used to label the 
ER. The actin cytoskeleton was stained with rhodamine-phalloidin (Invitro-
gen) as previously described (Amberg, 1998). In brief, cells were grown to 
the logarithmic growth phase in synthetic dextrose medium, fixed with 4% 
formaldehyde for 10 min at room temperature, washed with PBS, stained  
for 1 h under agitation with rhodamine-phalloidin according to the manu
facturer’s instructions, washed with PBS, and subjected to fluorescence  
microscopy. Vacuoles were stained with CellTracker blue CMAC (Invitro-
gen) according to the manufacturer’s instructions. In brief, cells were grown 
to the logarithmic growth phase in synthetic dextrose medium, incubated 
with 100 µM CMAC for 20 min under agitation at 30°C, washed with 
synthetic dextrose medium, and subjected to fluorescence microscopy.

Light microscopy
Cells were immobilized in 0.5% low melting point agarose in growth me-
dium. Confocal fluorescence microscopy images in Fig. 1 C were obtained 
using a true confocal scanner spectrophotometer system (Leica) in combi-
nation with a DM IRBE inverted microscope equipped with a 100×/1.40 
HCX PL APO oil objective (Leica). Epifluorescence images in Figs. 2 C, 5 A, 
and 7 B and data in Figs. 1 B, 2 D, 3 (A and B), 5 (B and C), 6 (B–D), 
and 7 C and Tables S1 and S2 were obtained at ambient temperature 
with a microscope (Axioplan 2; Carl Zeiss) equipped with a Plan Neofluar 
100×/1.30 Ph3 oil objective (Carl Zeiss). Images were recorded with a 
monochrome camera (Evolution VF Mono Cooled; Intas) and processed 
with Image-Pro Plus 5.0 and Scope-Pro 4.5 software (Media Cybernetics).  
Time-resolved epifluorescence images and data in Figs. 4 and S3 and 
Videos 1–3 were obtained with an inverted microscope (DMI6000 B; 
Leica) equipped with a 100×/1.40 HCX PL APO oil objective and a mono
chrome camera (DFC360 FX; Leica). The temperature was 30°C and 
was controlled with Inkubator BL (PeCon GmbH). Images were obtained 
with AF 6000 Core software (Leica) and subjected to deconvolution with 
3D deconvolution LAS AF software (AF6000; Leica). Merged images and 
mitochondrial tracks were generated with ImageJ software (version 1.43; 
National Institutes of Health; Abramoff et al., 2004). Epifluorescence 
images in Figs. 3, 6 (C and D), and S2 B were obtained at ambient tem-
perature with the same microscope and AF6000 Core software. Fluores-
cence is shown in false color. CorelDRAW Graphics Suite software (version 
12.0; Corel Corporation) was used for mounting of the figures; image ma-
nipulations other than minor adjustments of brightness and contrast were 

in their buds, it is conceivable that Mmr1 function may become 
important only after mitochondria have entered the bud. Possibly, 
Mmr1 of bud-localized mitochondria binds to bud tip–specific  
factors in the cell cortex and prevents backward movement of 
mitochondria to the mother cell. A function of Mmr1 down-
stream of Myo2 and Ypt11 is supported by our genetic data 
suggesting that the myo2(LQ) mutation is epistatic to mmr1. In 
other words, as long as mitochondria do not reach the bud tip, 
it is not important whether or not Mmr1 is present. However, 
a role of Mmr1 as a mitochondrial retention factor has not yet 
been demonstrated, and other proteins might play a role in 
immobilizing mitochondria in the bud. Although the available 
data clearly support a central role of Myo2 as a key component 
of mitochondrial inheritance, more work will be required to 
define the functions of ERMES complex components, Ypt11, 
and Mmr1 more precisely.

Myo2-powered transport of mitochondria in yeast may be 
taken as a paradigm for understanding myosin-mediated mito-
chondrial motility in higher organisms. Plant class XI myosins 
are closely related to fungal and metazoan class V myosins 
(Foth et al., 2006). Class XI myosins were found to colocalize 
with mitochondria in maize (Wang and Pesacreta, 2004) and are 
required for mitochondrial trafficking in leaf cells of tobacco 
(Avisar et al., 2008; Sparkes et al., 2008), and myosin inhibitors 
were shown to have an impact on mitochondrial movements in  
pollen tubes (Zheng et al., 2010). In metazoans, an unconven-
tional myosin is associated with mitochondria in locust photo
receptor cells (Stürmer and Baumann, 1998), Myo19 is expressed 
in multiple tissues of vertebrates, localizes to mitochondria, and 
functions in actin-based mitochondrial motility (Quintero et al., 
2009), and depletion of myosin V and VI in Drosophila mela-
nogaster neurons augments microtubule-dependent mitochon-
drial motility, pointing to a role of myosins in organelle docking 
(Pathak et al., 2010). Collectively, these observations suggest 
that mitochondria-associated myosins are relatively common in 
higher organisms.

Materials and methods
Plasmids
Standard procedures were used for cloning and amplification of plasmids. 
Plasmid pVT100U-mtGFP, pYX142-mtGFP (Westermann and Neupert, 
2000), or pYX142-mtCherry (provided by D. Scholz, Universität Bayreuth, 
Bayreuth, Germany) containing mCherry (Shaner et al., 2004) fused to the 
Su9 mitochondrial presequence was used to label mitochondria. Plasmid 
pDsRed-PTS1 (Smith et al., 2002) was used to label peroxisomes, and 
plasmid pWP1055 (Prinz et al., 2000) was used to label the ER. Plasmids 
pRS413-MYO2 (Catlett and Weisman, 1998) and pRS416-MYO2 (Catlett 
et al., 2000) were used to express the MYO2 gene under control of its own 
regulatory elements. Novel mutant alleles containing single amino acid 
exchanges were constructed in pRS413-MYO2 using the QuikChange 
Site-Directed Mutagenesis kit (Agilent Technologies) according to the man-
ufacturer’s instructions and the primers listed in Table S4. The myo2(LQ) 
allele was constructed by mutagenesis of plasmid pRS413-myo2(L1301P) 
using primers Q1233Rfwd and Q1233Rrev. For construction of Myo2-
Fis1 expression plasmids, an NheI site was removed in the vector back-
bone of pRS416-MYO2 using primers NheImutfwd and NheImutrev, and 
an NheI site was introduced in the MYO2 coding region using primers 
NheIfwd and NheIrev. Then, the tail anchor coding region of the FIS1 gene 
was amplified from genomic DNA by PCR using primers FIS1TMDfwd 
and FIS1TMDrev and cloned into the NheI and SacI sites of the modified 
plasmid, yielding pRS416-myo2-fis1. To obtain pRS413-myo2-fis1, pRS426-
myo2-fis1, and pRS425-myo2-fis1, the myo2-fis1 allele with its endogenous  
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Myo2-GFP-Fis1. Fig. S3 shows mitochondrial movements in WT, myo2(LQ), 
and myo2-fis1 strains. Videos 1–3 show mitochondrial movements in 
a WT cell (Video 1), a myo2(LQ) cell (Video 2), and a myo2-fis1(2µ) 
cell (Video 3). Table S1 shows mitochondrial and vacuolar inheritance 
defects in myo2 mutants. Table S2 shows mitochondrial morphology de-
fects in myo2 mutants. Table S3 shows quantification of Myo2 immuno
labeling on isolated mitochondria. Table S4 lists the primers used in 
this study. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201012088/DC1.

We thank Annette Suske and Rita Grotjahn for technical assistance, Markus 
Hermann for help with antibody purification, Stefan Geimer for advice with 
EM, Till Klecker for helpful discussions, and students Philipp Schmid and Evelin 
Urban for their contributions to some experiments. We are grateful to William A. 
Prinz, Richard A. Rachubinski, Doron Rapaport, Dirk Scholz, and Lois S. Weisman  
for making plasmids available to us.

This work was supported by Deutsche Forschungsgemeinschaft through 
grant DFG We 2174/3-3.

Submitted: 14 December 2010
Accepted: 6 July 2011

References
Abramoff, M.D., P.J. Magelhaes, and S.J. Ram. 2004. Image processing with 

ImageJ. Biophot. Int. 11:36–42.

Akhmanova, A., and J.A. Hammer III. 2010. Linking molecular motors to 
membrane cargo. Curr. Opin. Cell Biol. 22:479–487. doi:10.1016/j.ceb 
.2010.04.008

Altmann, K., and B. Westermann. 2005. Role of essential genes in mitochondrial 
morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell. 16:5410–
5417. doi:10.1091/mbc.E05-07-0678

Altmann, K., M. Dürr, and B. Westermann. 2007. Saccharomyces cerevisiae as 
a model organism to study mitochondrial biology: general considerations 
and basic procedures. Methods Mol. Biol. 372:81–90. doi:10.1007/978- 
1-59745-365-3_6

Altmann, K., M. Frank, D. Neumann, S. Jakobs, and B. Westermann. 2008. The 
class V myosin motor protein, Myo2, plays a major role in mitochon-
drial motility in Saccharomyces cerevisiae. J. Cell Biol. 181:119–130. 
doi:10.1083/jcb.200709099

Amberg, D.C. 1998. Three-dimensional imaging of the yeast actin cytoskeleton 
through the budding cell cycle. Mol. Biol. Cell. 9:3259–3262.

Arai, S., Y. Noda, S. Kainuma, I. Wada, and K. Yoda. 2008. Ypt11 functions in 
bud-directed transport of the Golgi by linking Myo2 to the coatomer sub-
unit Ret2. Curr. Biol. 18:987–991. doi:10.1016/j.cub.2008.06.028

Avisar, D., A.I. Prokhnevsky, K.S. Makarova, E.V. Koonin, and V.V. Dolja. 2008. 
Myosin XI-K Is required for rapid trafficking of Golgi stacks, peroxi-
somes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant 
Physiol. 146:1098–1108. doi:10.1104/pp.107.113647

Berger, K.H., L.F. Sogo, and M.P. Yaffe. 1997. Mdm12p, a component required 
for mitochondrial inheritance that is conserved between budding and fis-
sion yeast. J. Cell Biol. 136:545–553. doi:10.1083/jcb.136.3.545

Boldogh, I.R., and L.A. Pon. 2007. Mitochondria on the move. Trends Cell Biol. 
17:502–510. doi:10.1016/j.tcb.2007.07.008

Boldogh, I., N. Vojtov, S. Karmon, and L.A. Pon. 1998. Interaction between 
mitochondria and the actin cytoskeleton in budding yeast requires two 
integral mitochondrial outer membrane proteins, Mmm1p and Mdm10p. 
J. Cell Biol. 141:1371–1381. doi:10.1083/jcb.141.6.1371

Boldogh, I.R., H.-C. Yang, W.D. Nowakowski, S.L. Karmon, L.G. Hays, J.R. 
Yates III, and L.A. Pon. 2001. Arp2/3 complex and actin dynamics are re-
quired for actin-based mitochondrial motility in yeast. Proc. Natl. Acad. 
Sci. USA. 98:3162–3167. doi:10.1073/pnas.051494698

Boldogh, I.R., D.W. Nowakowski, H.C. Yang, H. Chung, S. Karmon, P. Royes, 
and L.A. Pon. 2003. A protein complex containing Mdm10p, Mdm12p, 
and Mmm1p links mitochondrial membranes and DNA to the cyto-
skeleton-based segregation machinery. Mol. Biol. Cell. 14:4618–4627. 
doi:10.1091/mbc.E03-04-0225

Boldogh, I.R., S.L. Ramcharan, H.C. Yang, and L.A. Pon. 2004. A type V myo-
sin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention 
of newly inherited mitochondria in yeast cells during cell division. Mol. 
Biol. Cell. 15:3994–4002. doi:10.1091/mbc.E04-01-0053

Boone, C., H. Bussey, and B.J. Andrews. 2007. Exploring genetic interactions and 
networks with yeast. Nat. Rev. Genet. 8:437–449. doi:10.1038/nrg2085

Brachmann, C.B., A. Davies, G.J. Cost, E. Caputo, J. Li, P. Hieter, and J.D. 
Boeke. 1998. Designer deletion strains derived from Saccharomyces 

not performed. If not indicated otherwise, quantifications are mean values 
from three independent experiments (n = 100), and error bars indicate 
standard deviations.

All datasets within a given figure were obtained in the same series 
of experiments performed under identical experimental conditions and can 
be directly compared. However, it should be noted that quantifications ob-
tained in different series of experiments or by different researchers in differ-
ent studies should be compared with caution. In some experiments, different 
growth media and/or genetic strain backgrounds were used, there might 
have been variations in the temperature during microscopy, and different 
morphological classes may have been used to quantify subtle phenotypes. 
In some experiments, mitochondrial phenotypes were specifically quanti-
fied in large and/or small buds (as indicated in the figure legends).

Antibodies
The Myo2 tail domain (amino acids 1131–1575) was expressed as a GST 
fusion protein in E. coli and purified as previously described (Pashkova  
et al., 2006). In brief, bacterial cells were lysed in the presence of protease 
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Mitochondrial pellets were used for preparation for immuno-EM.

Postembedding immuno-EM
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Online supplemental material
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