The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits

Takuya Okada a,b,c, Hiroto Tanaka a,c, Atsuko Hikikoshi Iwane c,d, Kazuo Kitamura e, Mitsuo Ikebe f, Toshio Yanagida a,b,c,d,*

a Formation of Soft Nano-Machines, CREST JST, 1-3, Yamadaoka, Suita, Osaka 565-0871, Japan
b Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
c Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita, Osaka 565-0871, Japan
d Department of Physiology and Biosignaling, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
e Department of Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
f Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0127, USA

Received 7 December 2006
Available online 8 January 2007

Abstract

It is widely accepted that the vesicle-transporter myosin-V moves processively along F-actin with large steps of ∼36 nm using a hand-over-hand mechanism. A key question is how does the rear head of two-headed myosin-V search for the forward actin target in the forward direction. Scanning probe nanometry was used to resolve this underlying search process, which was made possible by attaching the head to a relatively large probe. One-headed myosin-V undergoes directional diffusion with ∼5.5 nm substeps to develop an average displacement of ∼20 nm, which was independent of the neck length (2IQ and 6IQ motifs). Two-headed myosin-V showed several ∼5.5 nm substeps within each processive ∼36 nm step. These results suggest that the myosin-V head searches in the forward direction for the actin target using directional diffusion on the actin subunits according to a potential slope created along the actin helix.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Myosin-V; Actin filament; 5.5 nm substep; Processive movement; Scanning probe nanometry

Class-V myosin is a processive motor that transports organelles in cells [1,2]. Myosin-V has two heads, each with a long neck [3] (6IQ motifs), and moves along F-actin (actin filament) with large steps of ∼36 nm. This step size coincides with an actin half helical pitch [1]. Electron microscopy [4] and single molecule nano-scale imaging (FIONA) [5] have shown that myosin-V walks along the actin helical repeats using a hand-over-hand mechanism. Single molecule polarized fluorescence microscopy [6] and structural studies [7–9] have proposed that the rear head diffuses towards the forward target, with a bias by tilting the long neck. This tilting coupled to a rotation of the front head is based on the crossbridge tilting model [10,11]. The bending rigidity of the neck of myosin-V is ∼0.2 pN/nm [12,13] and the displacement of one-headed myosin-V 6IQ is ∼24 nm [12,13]. This displacement would not be sufficient to lead the rear head to the forward actin target by tilting the neck fast enough particularly against high loads (2–3 pN). Furthermore, a truncation mutant of myosin-V that has a short neck (1IQ motif), that is, no rigid long neck domain, can move processively with large, ∼36 nm steps, the same as that for wild-type myosin-V (6IQ motifs) [14]. These results suggest that another mechanism operates the search mechanism of the rear head.

The diffusive movement of the rear head occurs too fast (∼1 ms) to be detected by optical trapping nanometry [1] and single molecule nano-scale imaging [5]. In this study, we used scanning probe nanometry to resolve the diffusive process of the head, which had been slowed by attaching...
the head to a relatively large probe [15,16]. We found that one-headed myosin-V underwent directional diffusion with ~5.5 nm substeps to produce an average displacement of ~20 nm, which was independent of the neck size (2IQ and 6IQ motifs). The two-headed myosin-V showed pro-
cessive ~36 nm steps. Within each of these steps an inter-
mediate step was observed, which has been observed at high
loads [17] or in the presence of 2,3-butanedione 2-monoxime [18]. The intermediate step of ~17 nm could be
further resolved into several ~5.5 nm substeps. The results strongly indicate that the myosin-V head moves
along actin monomers. Based on these results, we propose a
mechanism whereby the myosin-V head searches in the
forward diffusion along an actin filament by directional
diffusion according to a potential slope along the actin
helix.

Materials and methods

To obtain recombinant one-headed myosin-V, SF9 cells were co-in-
fect ed with two separate viruses expressing human myosin-V heavy chain
(2IQ and 6IQ) and calmodulin. To obtain recombinant two-headed
myosin-V, mouse myosin-V heavy chain was used [19]. Actin was obtained
from rabbit skeletal muscle and purified as described previously [20].
α-actinin was obtained from chicken gizzard and prepared as described
previously [21]. Cy5-labeled actin monomers were prepared by conjugat-
ing Cy5-maleimide to reactive Cys-374 of actin as described previously
[22]. The biotinylated F-actin was prepared as previously described [23].
Biotin-BSA was prepared as previously described [23]. A scanning probe
was prepared as previously described [15].

A scanning probe measurement system was constructed based on an
inverted fluorescence microscope (IX70, Olympus, Japan) as previously
described with some modifications [15]. A blue laser (λ = 488 nm, Sap-
phire 488-20-CDRH, Coherent, Japan) was used for measuring the posi-
tion of the probe. The bright field image of the scanning probe was
projected to a split photodiode for nanometer accuracy (Fig. 1 A).
The blue laser was also used to illuminate GFP fused to myosin through
objective-type TIRFM by switching the beam path. The fluorescence
image was detected by a SIT camera (C2741-08, Hamamatsu Photonics,
Japan) and analyzed as previously described [15].

The captured myosin heads were visualized using the
fluorescence of fused GFP detected by total internal reflec-
tion fluorescence microscopy (TIRFM) [27,28] in conjunc-
tion with a scanning probe microscope (Fig. 1A). The
single one-headed myosin-V captured onto the probe was
brought into contact with actin bundles formed by α-actin-
in fixed on a glass surface. The displacements were deter-
mined by measuring the deflection of the needle with a
split photodiode with nanometer accuracy (Fig. 1A).

Fig. 1B shows typical traces of displacements (upper
green traces) and their rising phases on an expanded time
scale (lower blue traces), produced by a one-headed myo-
sin-V with a short neck (2IQ motifs) (B) or a long neck
(6IQ motifs) (C), all in the presence of 1 μM ATP at
15 °C. One-headed myosin-V showed non-processive dis-
placements. Displacements did not take place abruptly
but instead developed in a stepwise fashion. In order to
resolve the displacements, we took all pairwise distance
of the rising phase of each displacement and its power spec-
trum (Supplementary Fig. 1). The pairwise distances and
their power spectra for 169 (63%) out of 267 observed dis-
placements by one-headed myosin-V with 2IQ in 7 different
experiments at 15 and 20 °C showed peaks corresponding
to ~5.5 nm and/or ~11 nm substeps. Fig. 2A shows a his-
togram of pairwise distances averaged for the rising phases of
these 169 displacements. The power spectrum showed a
clear peak corresponding to ~5.5 nm substep, indicating
that the rising phases of displacements included ~5.5 nm.
The substeps of ~11 nm most likely correspond to
2 × ~5.5 nm substeps occurring within the temporal resolu-
tion of the measurement system. However, the remaining
98 (37%) displacements showed no clear substeps in their
rising phases. The present measurement system was able
to resolve the ~5.5 nm substeps whose dwell times were
> ~1 ms (τ = (2πfc)^(-1), where fc is the corner frequency of
the needle, ~200 Hz). Therefore, the most likely explana-
tion for the absence of 5.5 nm substeps is that they took
place within the time and spatial resolution of the measure-
ment system (Supplementary Fig. 2). Those exhibiting no
clear steps were consistent with the results of a computer
simulation on the effect of noise on the detection of
5.5 nm steps. For negative controls, we performed the pair-
wise distance and power spectrum analyses for three peri-
ods during which rising phases included 5.5 and/or 11 nm
steps: in between displacement events, during plateaus,
and during the falling phases of displacements. Neither
pairwise distance nor power spectrum in these three groups
had 5.5 or 11 nm steps. The data are shown in supplemen-
tary materials (Supplementary Fig. 3A–C).

Substeps were also observed for one-headed constructs
with a long (6IQ) neck. The pairwise analysis indicated that
46 (35%) and 37 (28%) out of observed 130 displacements
(2 different experiments) at 15 °C included ~5.5 nm and
~11 nm substeps, respectively. For the remaining 47
(37%) displacements, substeps were not clear. The thermal
noise created by the vibration of the needle resulting from
the large compliance of the long neck was larger than that
for the construct with a short (2IQ) neck, so in the pairwise
distance and power spectrum averaged for all displace-
ments exhibiting ~5.5 nm and/or ~11 nm substeps, the peak corresponding to 5.5 nm substeps was damped. Therefore we analysed these separately. The power spectrum of all pairwise distances averaged for the 46 displacements showed a peak corresponding to 5.5 nm substeps (Fig. 2B) and that averaged for the 37 displacements showed a peak corresponding to ~11 nm substeps.

The number of ~5.5 nm substeps per displacement for one-headed myosin-V 2IQ was between 1 and 7 with a mean of 3.6 ± 0.2 steps (Fig. 2C), which was similar to that of one-headed myosin-V 6IQ (3.8 ± 0.2 steps) (Fig. 2D).

The mechanical kinetics of displacements and ~5.5 nm substeps by one-headed myosin-V 2IQ at different ATP concentrations at 20 °C were analyzed. The mean durations of displacements were 0.28 and 1.3 s at 1 and 0.2 mM ATP, respectively. These durations give the second order association constant of ATP for actin–myosin complexes of ~3.4 μM⁻¹s⁻¹. This value was slightly larger than those obtained by a previous study for one-headed myosin-V with a short neck (1IQ) (~2.0 μM⁻¹s⁻¹) [30]. The ATP binding to an actomyosin-V complex is strain dependent [12]. Therefore, the strain exerted on myosin-V head attached to a large scanning probe would be different. This result indicates that each displacement corresponds to a single ATPase cycle by a single myosin head. This is in agreement with the fluorescence observations of GFP fused to the head of the probe. On the other hand, the mean dwell times for ~5.5 nm substeps observed in the rising phases of displacements were constant, independent of the concentration of ATP. Furthermore, the dwell times (2–3 ms) of the ~5.5 nm substeps were >100-fold shorter than the ATP turnover time at 1 μM ATP. Thus, these
results indicate that the observed multiple ~5.5 nm substeps take place within a single ATP hydrolysis event caused by a single myosin head.

A two-headed myosin-V showed processive movement with ~34 nm steps (Fig. 3A) as previously observed by optical trapping nanometry [1,17,18]. Furthermore an intermediate step (~17 nm) within each 34 nm step was observed (Fig. 3A, arrow). Such intermediate steps have been previously observed using optical trapping nanometry at high loads [17] or in the presence of 2,3-butanedione monoxime [18]. In this experiment, the intermediate step was clearly observed even at low loads. It is likely that the intermediate step was also slowed by attaching the two-headed myosin-V to a large scanning probe. Fig. 3B shows the rising phases of the intermediate steps on an expanded time scale. The substeps of ~5.5 nm could be clearly observed. The number of ~5.5 nm substeps within each intermediate step varied from between 1 and 6 with a mean number of ~3. Fig. 3C shows a histogram of all the pairwise distance of the rising phases and the power spectrum (insertion) averaged for 46 displacements (3 different experiments) primarily constituted ~5.5 nm substeps and/or ~11 nm and the power spectrum (insertion).

Discussion

The total number of ~5.5 nm substeps per displacement was between 1 and 7 with a mean value of 3–4 steps (Figs. 2C, D and 3B). The substep size (~5.5 nm) coincides with the distance between adjacent actin subunits and the
maximum stepping distance (~5.5 nm × 7) was approximately half the helical pitch of an actin filament (36 nm). Furthermore, the size of the substeps (~5.5 nm) was constant and independent of the myosin head neck domain size and the load. Thus, the results suggest that the myosin head undergoes directional steps on actin subunits according to a potential slope along the half helical pitch of an actin filament (Fig. 4A). The potential slope may be due to conformational changes in the actin filament [31,32].

The binding sites for a myosin head rotate along the F-actin helix. Therefore, when the myosin head fixed on the probe tip is brought into contact with an actin filament fixed on a glass surface, the steric compatibility between the orientation of the actin binding sites and the myosin head changes along the F-actin helix [14]. Thus, this steric compatibility should make a potential slope along the half helix of F-actin as previously suggested by Veigel et al. [33].

Based on these results, we propose a hopping model for two-headed myosin-V (Fig. 4B). ATP favorably binds to the rear head because of an intramolecular strain through the bending of the neck [12] (Fig. 4B (i)). The rear head detaches from actin and undergoes Brownian motion back and forth along the backward actin helix region, probably interacting with actin in the weak binding state because ~5.5 nm substeps were observed when trailing the front head (Fig. 4B (ii)). When the rear head moves beyond the front head, it undergoes directional hopping over approximately 3 actin subunits (~17 nm) according to a potential slope along the actin helix (Fig. 4B (iii)). This results in the movement of the stalk of myosin-V by ~16.5 nm (3 × 5.5 nm). When the rear head reaches the bottom of the potential i.e., the forward target, the negative strain is exerted on the neck domain of head and the release of Pi from the myosin head or isomerization of the myosin head is accelerated to form strong binding [34–36] (Fig. 4B (iv)). Thus, the myosin-V walks along the F-actin with ~36 nm steps.

Acknowledgments

This work was supported by a CREST JST. We are grateful to Drs. O. Ohara and H. Yamakawa for providing cDNA fragments of human myosin-V; Ms. T. Mimuro for generating the human Myosin-V construct; Drs. Y. Ishii, P. Karagiannis, M. Zulliger and J. West for critically reading the manuscript and helpful discussions; colleagues of the Yanagida Laboratory at the Single Molecule Processes Project, Formation of soft nano-machines, and Osaka University for discussion.

Appendix A. Supplementary data

References

