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Mitochondrial morphology changes dynamically by coordinated fusion and ssion and cytoskeleton-based
transport. Cycles of outer and inner membrane fusion and ssion are required for the exchange of damaged
mitochondrial genome DNA, proteins, and lipids with those of healthy mitochondria to maintain robust mi-
tochondrial structure and function. These dynamics are crucial for cellular life and death, because they are es-
sential for cellular development and homeostasis, as well as apoptosis. Disruption of these functions leads
Keywords: to cellular dysfunction, resulting in neurologic disorders and metabolic diseases. The cytoplasmic
Mitochondrial ssion dynamin-related GTPase Drp1 plays a key role in mitochondrial ssion, while Mfn1, Mfn2 and Opal are in-
Drpl volved in fusion reaction. Here, we review current knowledge regarding the regulation and physiologic rele-
Apoptosis vance of Drpl-dependent mitochondrial ssion: the initial recruitment and assembly of Drp1 on the
Mitophagy mitochondrial ssion foci, regulation of Drp1 activity by post-translational modi cations, and the role of mi-

Post-translational modi cation
Neurodegenerative disease

tochondrial ssion in cell pathophysiology.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mitochondria are essential organelles for the life and death of
eukaryotic cells and participate in oxidative phosphorylation; biogen-
esis of iron-sulfur clusters, heme, certain lipids, and amino acids; cal-
cium signaling; and regulation of apoptosis [1 9]. Mitochondria move
along cytoskeletal tracks to sites of high-energy demand, and change
their overall morphology by fusion and ssion in response to the cel-
lular environment and differentiation [10 13]. Mitochondria prolifer-
ate by growth and division, thus their fusion and ssion are important
for maintaining mitochondrial number and function. High-molecular
weight GTPases are key components involved in regulating the mito-
chondrial morphologic dynamics [4 8]; in vertebrates, mitofusin pro-
teins (Mfn1 and Mfn2) of the mitochondrial outer membrane (MOM)
regulate MOM fusion [14 18] and mitochondrial inner membrane
(MIM) protein Opal is involved in MIM fusion, probably coupled
with MOM fusion and cristae remodeling [19 21], whereas dynamin-
related protein Drp1 (or DIp1) mostly localizes to the cytoplasm and

Abbreviations: AKAP1, A kinase anchoring protein 1; Endo B1, endophilin B1; ER,
endoplasmic reticulum; GDAP1, ganglioside-induced differentiation-associated protein
1; GED, GTPase effector domain; GFP, green uorescent protein; KO, knockout; LRRK2,
leucine-rich repeat kinase 2; MEF, mouse embryonic broblast; Mff, mitochondrial s-
sion factor; MiD51, mitochondrial dynamics 51; MIEF1, mitochondrial elongation fac-
tor 1; MIM, mitochondrial inner membrane; Mfn2, mitofusin 2; MOM, mitochondrial
outer membrane; NO, nitric oxide; PKA, cAMP-dependent protein kinase; RNAi, RNA
interference; SUMO, small ubiquitin-like modi er; VD, variable domain
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is recruited to mitochondria to regulate mitochondrial ssion [22 25].
The balance of these opposing events is precisely controlled to maintain
the overall architecture and metabolic stability of the mitochondria
[26].

During mitochondrial ssion, cytoplasm-localized Drp1 as small
oligomers is recruited to the MOM and assembles into ssion foci, oc-
casionally at points of tubule constriction and ssion [4,6,8,22 25].
Binding of Drp1 to the MOM-anchored receptor(s) and subsequent
formation of the functional ssion complex ( ssion foci) are thought
to be essential for the initial step of mitochondrial ssion. Although
several MOM proteins have been identi ed as Drp1 receptor candi-
dates in mammals, their mechanistic roles and relative importance
in mitochondrial ssion are unclear [8,27 29]. Mitochondrial ssion
is regulated by post-translational modi cations of Drp1, including
phosphorylation, S-nitrosylation, SUMO(small ubiquitin-like modi -
er)ylation, ubiquitination, and O-GlcNAcylation, in response to di-
verse cellular stimuli [30]. Defective regulation of mitochondrial
morphology is linked to a number of human disorders, including
neurodegenerative diseases, myopathies, obesity, diabetes, and can-
cer [3,7,31,32]. This review provides a comprehensive overview of
the current knowledge regarding mitochondrial ssion. We rst
address recent ndings concerning the key components of mitochon-
drial ssion machinery and discuss their interplay, and then focus on
the physiologic roles of mitochondrial ssion in mammals.

2. Mitochondrial ssion machinery in mammals

Mitochondrial ssion is important for maintaining cellular func-
tion, and mitochondrial dysfunction causes aging, neuronal synaptic
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loss, and cell death in several human neurologic diseases. At the cel-
lular level, mitochondrial ssion contributes to ensuring the proper
distribution and quality control of mitochondria. A largely cytosolic
member of the dynamin family of GTPases, Drp1 (Dnm1 in yeast), is
the major player in mitochondrial ssion in mammals [22 25]. Genetic
and biochemical studies in yeast revealed that Dnm1-mediated mito-
chondrial ssion requires a MOM protein, Fis1, and a soluble protein,
Mdv1, or its paralogue, Caf4 [4,6,33 40]. During mitochondrial ssion,
Fis1 transiently interacts via cytosolic adaptor proteins Mdv1/Caf4
with Dnm1 by its tetratricopeptide-repeat motif, indicating that Fis1
functions as the mitochondrial Dnm1 receptor. Mdv1 comprises an
N-terminal extension containing a helix loop helix motif that interacts
with Fis1, a central coiled-coil region that mediates Mdv1 homo-
oligomerization, and a C-terminal WD40 domain to form a multibladed
p-propeller that interacts with a variable domain (VD or insert B) of
Dnm1 [41 44]. After targeting Dnm1 to the mitochondrial membrane,
Fis1 Mdv1 nucleates the Dnm1 assembly at mitochondrial ssion
sites, where it stimulates Dnm1 oligomerization and subsequent con-
striction of the mitochondrial membrane in a GTP-dependent manner
[25,40,45]. Dnm1 is also reported to interact with cortical Numl,
which is facilitated by MOM protein Mdm36 for mitochondrial ssion.
The Dnm1 Mdm36 Num1 system also mediates anchoring mitochon-
dria to the cell cortex and may be required for equal inheritance of
mitochondria during cell division [46,47]. Unlike Fis1, homologues of
Mdv1, Caf4, Num1, and Mdm36 have not been found in mammalian
cells. Although several ssion-related proteins have been identi ed
in mammals, their mechanistic roles in mitochondrial ssion remain
obscure.

2.1. Structure and function of mitochondrial fission GTPase Drp1

Drp1 (Dnm1 in yeast) is a conserved dynamin GTPase superfamily
protein that mediates membrane remodeling in a variety of cellular
membranes. It is a cytosolic protein with an N-terminal GTPase do-
main thought to provide mechanical force, a dynamin-like middle do-
main, and a GTPase effector domain (GED) located in the C-terminal
region (Fig. 3) [4,44 49]. Unlike Dynamin, Drp1/Dnm1 lacks the
lipid-interacting pleckstrin homology domain, but contains an
uncharacterized variable domain (VD; also called insert-B) be-
tween the middle domain and the GED [49 51]. Based on the crystal
structure of near full-length Dynamin, Drp1 is predicted to exist as a
T-shaped dimer or tetramer that contains a head (GTPase domain),
leg (VD), and stalk (middle and GED domains) [52 56]. GTP induces
the rearrangement of the head and stalk, which generates a force ulti-
mately resulting in membrane constriction [54 56]. During mitochon-
drial ssion, Drpl existing as dimer or tetramer in the cytoplasm
assembles into larger oligomeric structures as foci at the mitochondrial

ssion sites depending on GTP binding, wraps around the mitochondria,
and then severs the mitochondrial membrane by GTP hydrolysis
[23 25] (Fig. 1). Time-lapse imaging of the green uorescent protein
(GFP)-tagged Drp1 (GFP-Drp1) shows that mitochondrial tubules di-
vide at the sites of these foci [23,57]. Approximately 3% of total Drp1
is localized to mitochondria as foci and ~5% of the foci are involved in
division each hour [23]. A recent report demonstrated that mitochon-
drial division occurs at points where endoplasmic reticulum (ER) tu-
bules wrap around the mitochondria and mark mitochondrial division
sites [58 60]. The GTP-hydrolysis defective mutant (K38A) sequesters
endogenous Drp1 into uncharacterized aggregated or dotted structures
consisting of membrane tubules, thus inhibiting its localization to the
mitochondrial ssion sites and acting as a dominant negative mutant
[24]. Intermolecular interactions between the N-terminal GTPase do-
main and C-terminal GED are also important for Drp1 self-assembly
and functional regulation [52,61,62].

Cryo-electron microscopy revealed that, upon GTP hydrolysis,
Dnm1 constricts liposomes and subsequently dissociates from the
lipid bilayer by undergoing larger conformational changes [48].

http://authors.elsevier.com/offprints/BBAMCR16880/...
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Unlike the pleckstrin homology domain of dynamin, the VD of
Dnm1 does not integrate into the lipid bilayer, suggesting a weak in-
teraction between the lipid and Dnm1 [48,63 65]. As described
above, Janet Shaw and collaborators recently demonstrated that the
VD domain of Dnm1l is essential for binding to the Mdv1
p-propeller domain [54]. In contrast, interestingly, Strack and Cribbs
reported that the VD of Drp1 is dispensable for recruitment to the mi-
tochondrial membrane and mitochondrial ssion in live cells [66]. In-
deed, several AVD mutants constitutively localize to the MOM surface
and fragment mitochondria more ef ciently than wild-type Drpl.
There is a 3- to 4 nm gap between Dnm1 and the lipid in the 3D struc-
ture of the Dnm1-liposome tube [48], which easily accommodates the
protein cofactors required for mitochondrial ssion (see below). In
vivo, additional Dnm1-associated factors might regulate and facilitate
membrane constriction and scission events. F-actin is reported to be
involved in mitochondrial ssion by facilitating mitochondrial re-
cruitment of Drp1 [67]. In this context, Tau inhibits Drp1 recruitment
by stabilizing actin, which leads to mitochondrial elongation and neuro-
toxicity; a direct consequence of tau toxicity in neurons in Alzheimer's
disease and related neurodegenerative disorders [68]. Furthermore,
the Dynein/dynactin system is reported to control mitochondrial mor-
phology by regulating the mitochondrial recruitment of Drp1 via micro-
tubules [69]. The functional division of these mechanisms is not known.

2.2. Mff is important for Drp1 recruitment to mitochondrial fission sites

At the cellular level, almost all Drp1 is cytosolic with only a small
fraction of the total Drp1 residing at the mitochondrial membrane.
Extrapolation from the mitochondrial ssion process in yeast sug-
gests that mammalian Fis1 (hFis1 for humans) could be a receptor
for Drp1 recruitment. Depletion of hFis1, however, does not affect mi-
tochondrial recruitment of Drp1 [70]. Thus, the mechanisms by which
cytoplasmically-localized Drp1 is activated and recruited to the pro-
spective mitochondrial ssion sites have remained unclear. Mito-
chondrial ssion factor (Mff) is a C-tail anchored protein recently
identi ed in a Drosophila RNA interference (RNAi) library search for
mitochondrial morphology alterations [71]. Mammalian mitochon-
dria contain an Mff orthologue and silencing this factor by RNAi in-
duces mitochondrial elongation in mammalian cells, suggesting its
involvement in mitochondrial ssion [71,72]. To better elucidate its
role, we rst examined whether Mff RNAI affects the mitochondrial
recruitment of Drp1. Endogenous Drp1, observed as dotted structures
on mitochondria, was clearly decreased and was dispersed in the cy-
toplasm in Mff RNAI cells concomitant with mitochondrial network
extension. Conversely, Mff overexpression induced mitochondrial
fragmentation with increased Drp1 recruitment to the mitochondria
[8,27,72]. Consistent with these observations, both in vitro and in
vivo experiments demonstrated that Mff transiently interacts with
Drp1 through its N-terminal cytoplasmic region. Furthermore, Mff
mostly colocalizes with the Drp1 foci on the MOM, in marked contrast
to the uniform localization of hFis1 in the MOM [72]. Interestingly,
dotted structure of Mff disperses throughout the MOM in the absence
of Drp1 (Otera and Mihara; unpublished results), suggesting that
Drp1 affects oligomerization of Mff. These observations indicate that
Mff functions as a Drpl receptor to mediate mitochondrial ssion
(Fig. 1). Drp1 might self-assemble via its ability to homo-oligomerize
on the Mff of MOM [71], probably forming spiral structures around the
mitochondrial tubules. Unidenti ed Mff-interacting proteins might af-
fect the assembly of the ssion machinery, leading to membrane con-
strictions or lipid remodeling and eventually to membrane scission
(see below). As mentioned above, it is also possible that ER tubules
wrapping around mitochondria mediate constriction and de ne the
mitochondrial division sites prior to Mff-dependent Drp1 assembly
[58 60].

In contrast to the conservation of Fis1 through various species,
there are no obvious homologues of Mdv1/Caf4 in metazoans, and
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MiD51/MIEF1 attenuates GTP hydrolysis of Drp1
and stimulates self-assembly of Drp1

..................

Mff  MiD51/MIEF1

1. Drp1 recruitment

2. Drp1 self-assembly

3. Mitochondrial
fission complex
formation

4. GTP hydrolysis-
dependent fission

Fig. 1. Hypothetical model for the assembly of mitochondrial ssion complexes. Mff functions as a dominant Drp1 receptor. MiD/MIEF proteins inhibit GTPase activity of Drp1 and

mediate subsequent oligomerization of Drp1 in the Drp1¢™ form (Fig. 1). Drp1¢™

leading to the stimulation of Drp1 GTPase to induce mitochondrial ssion. Under conditions of MiD/MIEF1 overexpression, Drp
mitochondria and results in the arrest of subsequent mitochondrial membrane ssion.

Mff appears to be restricted to metazoans. Mammalian mitochondria
seem to have adopted ssion mechanisms distinct from those of yeast
or plants [4,6,33 40,73 75]. The mechanistic details of these processes
and their GTP-dependence remain key questions for future studies.

2.3. Role of MiD/MIEF1 proteins in Drp1 assembly and mitochondrial
morphology

Mitochondrial dynamics 51 (MiD51), also called mitochondrial
elongation factor 1 (MIEF1), and the variant MiD49 are MOM proteins
identi ed by a random cellular localization screen of uncharacterized
proteins whose expression causes unique distribution and changes in
mitochondrial morphology [76,77]. Shortly after the induction of
MiD51/MIEF1 in cultured cells, Drp1 is initially recruited to mito-
chondria where it induces mitochondrial ssion. At later stages, the
mitochondrial network becomes more fused, concomitant with
Drp1 accumulation at the mitochondrial surface [76]. Palmer et al.
suggested that Drp1 becomes sequestered at the mitochondria in a
non-functional form, thereby blocking ssion and shifting the balance
towards fusion [76]. Opposite knockdown phenotypes, however, are
also reported; Palmer et al. found that knockdown of MiD49 or MiD51
alone does not affect mitochondrial morphology, whereas the knock-
down of both causes mitochondrial elongation [76]. On the other hand,
Zhao et al. claimed that the knockdown of MIEF1/MiD51 induces mito-
chondrial fragmentation. They concluded that MIEF1 recruits Drp1 and
inhibits the GTPase-dependent ssion activity of Drp1, but instead it
has fusion activity independent of Mfn2 in the fusion pathway [77].
The reason for these discrepancies between two groups remains to be
clari ed, although our experiments indicated that knockdown of
MiD51/MIEF1 reproducibly inhibits Drp1-dependent mitochondrial s-
sion and induces mitochondrial elongation, con rming the results of
Palmer et al. Interestingly, MiD51/MIEF1 interacts with recombinant
Drp1 to inhibit its GTPase activity accompanied by Drp1 oligomerization.
In contrast, Mff competes with MiD51/MIEF1 to stimulate Drp1 GTPase
activity (Otera and Mihara; unpublished results); MiD51/MIEF1 seems
to bind oligomerized Drp1 and stabilize them at the surface of the mito-
chondrial membrane in the GTP-locked state to inhibit mitochondrial

ssion. What might be the functional relation of Mff and MiD/MIEF pro-
teins in the Drp1-dependent mitochondrial ssion process? Based on
common denominator of the reports of two groups [76,77] and our

4/ 14

multimers then promote the oligomerization of Mff with unknown factors into ssion complexes,

16 self-assembles into large inactive structures on

ndings that Drp1 foci are ef ciently removed by Mff RNAi even in the
presence of endogenous MiD/MIEF proteins [72], we speculate that Mff
functions as a dominant Drp1 receptor and MiD/MIEF proteins are
involved in subsequent Drpl oligomerization in the Drp1¢™ form
(Fig. 1). Mff collaborating with unknown factor(s) then stimulates
Drp1 GTPase activity to induce mitochondrial ssion. In support of this
hypothesis, a dominant-negative GTPase mutant, Drp1-K38A4, is also
recruited to the mitochondria following MiD51/MIEF1 expression,
whereas dominant-negative mutants containing the middle domain
mutations Drp1-A395D and G363D, which have defects in higher-
ordered assembly, are not recruited to the mitochondria [76]. However,
the possibility that Mff and MiD/MIEF proteins function independently
in distinct Drp1-dependent mitochondrial morphology regulation path-
ways cannot be ruled out.

2.4. Enigmatic roles of hFis1 in mitochondria dynamics in mammals

Fis1 is a C-tail anchored MOM protein with its N-terminal multiple
tetratricopeptide repeat motif exposed to the cytoplasm. Fis1 has also
been identi ed in mammalian mitochondria (hFis1 for human Fis1)
and is thought to be involved in recruiting Drp1 to the mitochondria
through direct or indirect interactions as in yeast [78,79]. The actual func-
tion of hFis1, however, remains unclear, because the Mdv1/Caf4-like
adaptor proteins have not been identi ed. hFis1 evenly localizes through-
out the MOM [80,81] in contrast to the punctate localization of Drp1 and
Mff [72], and mitochondrial recruitment of Drp1 is not or only marginally
affected by hFis1-knockdown or exogenous expression [70,72,81]. Thus,
whether or not hFis1 induces mitochondrial ssion is controversial.
Yeast Fis1 is well established to mediate mitochondrial ssion, and simi-
larly, plant Fis1 is required for mitochondrial ssion [73,74,82]. Deletion
of Fis1 and Fis2 in Caenorhabditis elegans, however, does not result in
any detectable mitochondrial defects [83]. Moreover, hFis1 cannot rescue
the phenotype of yeast fis1 cells [79], indicating that the two proteins
are structurally divergent or act through different mechanisms. More-
over, conditional knockout of hFis1 in colon carcinoma cells revealed
that it is dispensable for mitochondrial ssion [72]. Thus, the actual func-
tion of hFis1 in mitochondrial ssion in mammals remains a mystery.

What then is the physiologic function of hFis1? Iwasawa et al. re-
cently demonstrated that hFis1 transmits an apoptosis signal from the
mitochondria to the ER by interacting with Bap31 at the ER to facilitate
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its cleavage into the pro-apoptotic processed form (p20Bap31).
p20Bap31 causes rapid transmission of ER calcium signals to the
mitochondria at close ER-mitochondria junctions [84]. This calcium in-

ux into the mitochondria stimulates Drp1-dependent mitochondrial

ssion and cytochrome c release [85]. Although the exact mechanism
of apoptosis regulation by hFis1 is unclear, hFis1 might function as
the ER gateway for ER-mediated apoptosis in mammals rather than
in mitochondrial division [86]. Gomes and Scorrano reported that
overexpression of hFis1 induces mitochondrial fragmentation and
dysfunction, and the mitochondria are targeted to autophagosomes
[87], suggesting a functional link to autophagy [88,89], although the ar-
ti cial effect of membrane protein overexpression cannot be ruled out.
Recently, we identi ed TBC domain family member 15 (TBC1D15) as a
novel hFis1-interacting protein. TBC1D15 is thought to be a GTPase-
activating protein for small GTPase Rab7 and Rab11, which promotes
fusion events between late endosomes and lysosomes [90,91]. At the
cellular level, the majority of TBC1D15 is cytosolic with only a small
amount residing in the mitochondria. hFis1 directly interacts with
TBC1D15 and its overexpression stimulates mitochondrial recruit-
ment of TBC1D15 [92]. TBC1D15 RNAI cells display an elongated
and protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP)
sensitive mitochondrial network without alterations in the Drp1,
suggesting the presence of hFis1-dependent, but Drp1-independent, mi-
tochondrial morphology regulation.

2.5. Other fission-related proteins

2.5.1. Ganglioside-induced differentiation-associated protein (GDAP) 1
Ganglioside-induced differentiation-associated protein 1 (GDAP1)
is another mitochondrial ssion-related factor located on the MOM
through C-terminal hydrophobic transmembrane domain extruding
the bulk N-terminal domain to the cytoplasm [93]. It is expressed in
myelinating Schwann cells and motor and sensory neurons. GDAP1
mutations lead to the peripheral neuropathy Charcot Marie Tooth
disease, either with primary axonal loss or with primary demyelin-
ation of peripheral nerves [94]. GDAP1 mutants found in patients
with Charcot Marie Tooth disease are not targeted to the mitochon-
dria and lack mitochondrial fragmentation activity [93]. GDAP1-
induced mitochondrial fragmentation is inhibited by Drp1 knock-
down or expression of the dominant-negative Drp1-K38A mutant,
indicating that GDAP1 is a Drp1-dependent regulator of mitochondrial
ssion [93]. GDAP1 has two glutathione S-transferase family domains,
although the functional relation to mitochondrial morphology reg-
ulation remains unknown [95]. Gangliosides, sialic acid-containing
glycosphingolipids, are suggested to play important roles in neural
differentiation through the signal transduction pathway [96,97].
Although it is not clear how GDAP1 is involved in mitochondrial
ssion, these ndings suggest the importance of membrane lipid
components such as gangliosides in mitochondrial ssion. Upon
apoptotic stimulation, for example, Drp1 and hFis1 associate with
the raft-like microdomains, glycosphingolipid-enriched structures
in the MOM [98]. Further, in lymphoid cells from patients with
Huntington's disease, Drp1 and mutated huntingtin are ef ciently
targeted to the raft-like microdomains of MOM, causing increased pro-
duction of reactive oxygen species and apoptosis vulnerability [99]. Dis-
ruption of these rafts by treatment with chemical inhibitors of ceramide
synthesis, Fumonisin B1, and [D]-threo-1-phenyl-2-decanoylamino-3-
morpholino-1-propanol, or by cyclodextrin results in decreased mito-
chondrial ssion and apoptosis. These raft-like microdomains might
function as platforms for Drp1 recruitment and to secure apoptotic
signal transduction. The link between mitochondrial ssion and perox-
isomal ssion also raises the possibility that GDAP1 regulates the divi-
sion of peroxisomes. It would be interesting to test whether the cells
of patients with Charcot Marie Tooth disease contain elongated
peroxisomes.

http://authors.elsevier.com/offprints/BBAMCR16880/...
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2.5.2. Endophilin B 1

Endophilins, fatty acyl transferases, are suggested to mediate
changes in membrane curvature and to participate in membrane scis-
sion during endocytosis and intracellular organelle biogenesis; they
possess an N-terminal Bar domain that interacts with membranes and
a C-terminal SH3 domain that mediates protein binding [100 103].
Endophilin B1 (Endo B1, also called Bif-1) was identi ed by yeast
two-hybrid protein screening to bind a proapoptotic Bcl-2 family mem-
ber Bax, and is reported to be involved in apoptosis [104,105], mito-
chondrial morphogenesis [106], and autophagosome formation [107].
Karbowski et al. demonstrated that Endo B1 dynamically cycles be-
tween the cytosol and mitochondria and only a small fraction resides
on the tips and at the MOM [106]. During apoptosis, Endo B1 translo-
cates from the cytosol to the mitochondria as clusters. Its knockdown
or overexpression of the truncated form induces striking mitochondrial
morphology alterations; the dissociation of MOM and MIM, and the for-
mation of MOM vesicles and tubules [ 106]. Interestingly, these morpho-
logic phenotypes are suppressed by Drp1 knockdown or expression of a
dominant-negative Drp1-K38A mutant, indicating that Drp1 acts up-
stream of Endo B1 to maintain the mitochondrial network dynamics
[106].

2.5.3. Sacsin

Sacsin is a 4579-amino acid multi-domain protein encoded by the
SACS gene, whose mutations cause childhood-onset autosomal reces-
sive spastic ataxia of Charlevoix-Saguenay [108]. It is highly expressed
in the central nervous system, and is also found in the skin, skeletal
muscles, and at low levels in the pancreas. Recent work indicates that
sacsin is localized to the mitochondria, partially overlapping with the
Drp1 foci [109]. Exogenously expressed sacsin (1 1368 residue seg-
ment) interacts with endogenous Drp1. Interestingly, mitochondria in
cells of sacsin knockout (KO) mice and patients with autosomal
recessive spastic ataxia of Charlevoix-Saguenay display a hyperfused
balloon-like mitochondrial morphology, mimicking the mitochondrial
phenotype of Drp1-depleted cells; a characteristic structure observed
in Drp1- or Mff-knockdown cells or dominant-negative Drp1-K38A-
expressing cells. In sacsin-de cient neuronal cells, enlarged mitochon-
dria are clustered and accumulate in the soma and proximal dendrites,
and display fewer dendrites than control cells, a morphologic response
observed in the neuronal cells of Drp1 KO mice (see below). Importantly,
sacsin KO mice display age-dependent loss of cerebellar Purkinje cells,
probably due to disturbances in the mitochondrial delivery within
neurites. Interaction of sacsin with Drp1 was demonstrated by immu-
noprecipitation [109]. These results suggest that sacsin regulates Drp1
activity.

2.5.4. LRRK2

The leucine-rich repeat kinase 2 (LRRK2) is a large multi-domain
kinase (2527 amino acids) including the C-terminal WD40 domain
and its mutations are linked with autosomal dominant Parkinson's
disease (PARK8-type) [110]. It is found in the cytoplasm and is asso-
ciated with the mitochondrial membrane. Exogenous expression of
LRRK2 stimulates mitochondrial recruitment of Drp1 by direct inter-
action and induces mitochondrial ssion, mitochondrial dysfunction,
and cell susceptibility to stress, probably through its kinase activity
[111,112]. The mechanism by which LRRK2 kinase mediates mito-
chondrial recruitment of Drp1 to induce mitochondrial ssion re-
mains to be analyzed. LRRK2 might interact with Drp1 through its
C-terminal WD40 motif as is the case for the Mdvl Dnm1 interaction
[41,42].

2.5.5. Mutant huntingtin (Htt)

Huntington's disease (HD) is an autosomal dominant disease caused
by abnormal polyglutamine (polyQ) expansion within huntingtin (Htt),
leading to the progressive loss of striatal and cortical neurons, cognitive
and motor impairment, and eventually death. Bossy-Wetzel and
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collaborators demonstrated that mutant Htts (Q46 and Q97) directly
interact with Drp1 to stimulate Drp1 GTPase activity, which triggers
mitochondrial fragmentation, leading to the inhibition of axonal mito-
chondrial transport and neural cell death. All these defects were rescued
by reducing Drp1 GTPase activity by the dominant-negative Drp1-K38A
mutant [113]. In addition to this effect, as discussed below (Section 6.1.
Phosphorylation), mutant Htts hyperactivate phosphatase calcineurin
to activate Drp1 by dephosphorylation of inactive Drp1-Ser637(P),
leading to mitochondrial fragmentation, cristae disruption, and in-
creased apoptosis susceptibility in HD cells [158,159,165]. How these
direct and indirect action modes of mutant Htts are coordinated in HD
cells remain to be clari ed.

3. Functional relevance of Drp1-dependent mitochondrial ssion

In an immortalized Drp1 KO broblast cell line that we established
(Drp1 KO mouse embryonic broblasts [MEFs]), the growth rate, re-
spiratory activity, cellular ATP levels, and mitochondrial DNA levels
are comparable with those of control MEFs, indicating that Drp1 is
dispensable for cell viability and the maintenance of active mitochon-
dria in MEFs [114]. Another group, however, reported that primary
Drp1 KO MEFs are viable but grow slower than control cells, despite
normal cellular ATP levels [115]. In Drp1 KO cells, mitochondria are
segregated, although unequally, to daughter cells by forced ssion
at the midbody (cell ssion site) during cytokinesis, suggesting that
mitochondrial ssion is not essential for mitosis but facilitates sto-
chastic distribution of the mitochondria to daughter cells.

To elucidate the detailed physiologic roles of mitochondrial ssion
in vivo, we and another group generated tissue-speci ¢ Drp1 KO mice
using the Cre and loxP system [114,115]. Although Drp1 is dispens-
able for MEF viability, as described above, Drp1 KO mice die at around
embryonic day 12.5 with developmental abnormalities, particularly
in the forebrain. In addition, a missense mutation in mouse Drp1 in
the middle domain that is essential for intramolecular interactions
(Python mice; C452F mutation) leads to cardiomyopathy [116]. The
main developmental abnormalities observed in Drp1 KO mice are de-
fects in forebrain and synapse development, poorly developed livers,
and compromised cardiac formation or function [114,115], while
heterozygous Python mice exhibit depletion of cardiac ATP and
cardiomyopathy [116]. To date, only a dominant-negative middle
domain mutation (A395D) in Drp1 has been reported in a lethal dis-
order with microcephaly, abnormal brain development, optic atro-
phy, hypoplasia, persistent lactic acidemia, and a mildly elevated
plasma concentration of very-long-chain fatty acids [117]. Immuno-

uorescence microscopy analysis revealed abnormal elongation of
the mitochondria and peroxisomes in cultured broblasts from the
patient. Surprisingly, histologic and histochemical analyses of the
muscle-biopsy sample from the patient did not reveal mitochondrial
abnormalities. Despite its severe clinical phenotype, activity of the
respiratory-chain enzymes was normal in muscle and in cultured bro-
blasts derived from the patient. Furthermore, biochemical investiga-
tions of skin broblasts revealed no abnormalities in the peroxisomal
functions, such as 3-oxidation of cerotic acid and pristanic acid, making
it dif cult to determine the bona fide roles of mitochondrial ssion
based on studies of the patient [117].

Neurons are particularly vulnerable to mitochondrial dysfunction
(Fig. 2). Neuron-speci ¢ Drp1 KO mice are viable at birth, but quickly
die due to neurodegeneration [114,115]. In primary cultured neural
cells from Drp1 KO embryos, enlarged and aggregated mitochondria
are sparsely distributed in the neurites, and the synaptic structures
are lost [114,115] (Fig. 2). These ndings suggest that Drpl-
de ciency causes an abnormal distribution of enlarged mitochondria
in extremely polarized cells such as neurites; these spatiotemporal
defects may inhibit the ATP supply and Ca®™ signaling, eventually
preventing synapse formation. Taken together, these results suggest
that Drp1 de ciency results in unusually shaped, large mitochondria
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with compromised intracellular movement, which leads to neuronal
cell death (Fig. 2). In this context, the Parkinson's disease factors
PINK and Parkin (see Mitochondrial ssion and mitophagy section)
target Miro, a Rho-like GTPase that plays an important role in the
mitochondrial transport in neurons, for phosphorylation and degra-
dation to halt the movement of damaged mitochondria in neurites
[118]. The importance of mitochondrial movement within cells is
also observed in T-cell differentiation. Drp1 de ciency or inactivation
affects the delivery of mitochondria to the immune synapse and af-
fects T-cell receptor signaling at the immune synapse [119]. When
Drp1 is deleted in postmitotic Purkinje cells in the cerebellum using
the L7-Cre system, the mitochondria elongate due to excess fusion,
then become swollen by increased reactive oxygen species accumulation
through compromised respiratory activity, leading to age-dependent
neurodegeneration. Thus mitochondrial ssion ensures the survival of
neurons [120]. In contrast, Grohm et al. recently reported that enhanced
mitochondrial ssion, loss of membrane potential, and apoptosis in-
duced by glutamate toxicity or oxygen-glucose deprivation in mouse
hippocampal neuronal cells, or transient focal ischemia in a mouse
model are protected by Drp1 knockdown or the inhibition of Drp1 by a
chemical inhibitor mdivi-1 [121]. In addition to the role of Drp1 in mito-
chondrial distribution, these ndings suggest that mitochondrial ssion
also functions as a quality control system to suppress age-dependent
oxidative damage and thus promote neuronal survival [89,122]. Deter-
mining the physiologic relevance of Drp1 in other tissues that might un-
derlie various human diseases remains a challenge to be addressed.

4. Mitochondrial ssion and apoptosis

It is generally accepted that the mitochondrial network collapses
into small spherical structures in response to apoptotic stimuli, and
that pro-apoptotic and anti-apoptotic Bcl-2 family member proteins
play important roles in regulating mitochondrial morphology [123].
During apoptosis, cytosolic Bax targets the MOM and colocalizes
with Drp1 and Mfn2 at mitochondrial sites where ssion subsequent-
ly occurs [124]. Bak, which initially localizes uniformly on the MOM,
also coalesces into discrete foci at mitochondrial ssion sites during
apoptosis. tBid-triggered Bax/Bak activation correlates with a reduc-
tion in mitochondrial fusion, possibly through the inhibition of Mfn2,
and eventually leads to mitochondrial fragmentation [125,126]. Upon
Bax activation, Drp1 stably associates with the MOM through Bax/
Bak-dependent SUMO modi cations of Drp1 [127]. This mitochondrial
fragmentation is caspase-independent and occurs concomitantly with
permeabilization of the MOM, cristae disorganization, and subsequent
cytochrome c release [70,128]. Increased mitochondrial ssion in
apoptotic cells apparently parallels the release of cytochrome c, and
the inhibition of ssion by Drp1 knockdown compromises the release
of cytochrome c, suggesting that the release of cytochrome c from the
inter membrane space is intimately involved in mitochondrial ssion
[70]. Consistent with these data, Mff depletion by RNAI results in exten-
sive mitochondrial elongation, delayed cytochrome c release, and retar-
dation of apoptosis [71,72]. Similarly, MEFs from Drp1 KO mice exhibit a
delay in cytochrome c release, caspase activation, and nuclear DNA frag-
mentation [114,115]. Notably, mitochondria with network structures
that are subtly different from the structures observed prior to cyto-
chrome c release are frequently detected in Drp1 KO cells after the re-
lease of cytochrome ¢, and seem to undergo fragmentation in the
advanced stage of apoptosis, suggesting that Drp1-independent mito-
chondrial fragmentation likely occurs late after the release of cyto-
chrome ¢ [114]. This suggests that Drpl-independent ssion might
participate in mitochondrial ssion during apoptosis. In this context, it
is reported that Drosophila PMI and its human homologue TEMEM11
of the MIM regulate mitochondrial ssion in a Drpl- and Mfn-
independent manner [129]. Nakamura et al. recently reported that
a-synuclein, which plays a central role in Parkinson's disease, promotes
mitochondrial ssion through a Drpl-independent pathway [130]. In
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Fig. 2. Physiologic function of mitochondrial ssion in neuronal cells. (A) Mitochondria are usually distributed throughout the soma and neurites of normal neuronal cells by
microtubule-based mitochondrial transport. (B) Fission-de cient mitochondria form aggregates in the soma and neurites, which inhibit ef cient mitochondrial distribution within
the neurites, leading to the synaptic structure loss. In normal cells, mitochondrial respiratory activity is maintained by the PINK/Parkin-dependent quality control system called
mitophagy. In ssion-de cient cells, mitochondria elongate due to excessive fusion, become large spheres due to oxidative damage, accumulate ubiquitinated MOM proteins,
and lose respiratory function, leading to neurodegenerative diseases. Parkin/PINK1 system also targets Miro on damaged mitochondria for phosphorylation and degradation to

halt the movement of damaged mitochondria in neurites.

vitro, recombinant oligomeric a-synuclein directly interacts and frag-
ments liposomes containing the mitochondrial lipid cardiolipin [130].
Taken together, these ndings indicate that delayed cytochrome c re-
lease in these cells is relatively modest, which suggests that although
the Drp1-Mff system is dispensable, it facilitates the normal progression
of apoptosis [114,115]. Conversely, the inhibition of mitochondrial
fragmentation by the activation of fusion-related proteins, such as
Mfn1, Mfn2, or Opal antagonizes apoptosis progression. The role of
Drp1-dependent mitochondrial ssion in apoptosis progression, how-
ever, remains controversial. In contrast to the apparent Drp1 function
in apoptosis described above, the inhibition of mitochondrial ssion
by Drp1 RNAI results in spontaneous apoptosis in both human lung
and colon cancer cells [131].

A pharmacologic inhibitor of Drp1-GTPase, mdivi-1, inhibits tBid-
dependent cytochrome c release from isolated mitochondria that are
incapable of undergoing ssion in vitro [132,133]. These ndings sug-
gest either that mdivi-1 inhibits Drp1 functions other than mediating
mitochondrial ssion or that it inhibits molecules other than Drp1
that regulate cytochrome c release [132]. Martinou and coworkers
demonstrated that Drp1l promotes the formation of a nonbilayer
hemi ssion intermediate in which the activated and oligomerized

Bax forms a hole, leading to MOM permeabilization [134]. A recent
study demonstrated that mdivi-1 reduces cell death and protects adult
murine cardiomyocytes against ischemia/reperfusion injury and reduces
myocardial infarct size in the murine heart and hyperproliferation of vas-
cular smooth muscle cells in pulmonary arterial hypertension [135].
These observations suggest that the inhibition of Drp1 by mdivi-1 pro-
vides an ef cient pharmacologic strategy for human diseases including
cancer, and cardiac and brain damage [121,133,136]. Of note, although
mitochondrial fragmentation is indeed associated with apoptosis, exces-
sive mitochondrial fragmentation can occur in a variety of conditions in-
dependently of apoptotic processes, such as reversible fragmentation
when exposed to CCCP. Thus, the input of additional death signals on
Drp1 function is required for the cells to cross the point of no return.

5. Mitochondrial ssion and mitophagy

During mitochondrial ssion, a single mitochondrion divides into
functionally uneven daughter mitochondria; the daughter mitochon-
dria with a high membrane potential and a high probability for subse-
quent fusion, and those with low respiration activity, decreased
membrane potential and a reduced probability for fusion, and the
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latter fractions are rapidly eliminated by autophagy (termed mitophagy),
thus maintaining overall mitochondrial quality [89,137]. Mitophagy is
also required for the regulation of the mitochondrial number to match
the metabolic or developmental demands [138,139]. The Parkinson's
disease-related protein kinase (PINK1; PTEN-induced putative Ser/Thr
kinase) and a RING domain-containing E3 ubiquitin ligase Parkin are in-
volved in mitophagy. PINK1 is steadily targeted and degraded on healthy
mitochondria. Upon membrane depolarization, it is stabilized on
the MOM, activated by phosphorylation on the serine residues,
and recruits cytosolic Parkin to ubiquitinate damaged mitochon-
dria prior to autophagosome formation [140 142]. In addition to
the above-described mitophagy pathway, Parkin also mediates
proteasome-dependent degradation of MOM proteins, leaving proteins
of the inner compartments undegraded [143,144]. This reaction pro-
motes the rupture of the MOM [144,145]. Thus, Parkin regulates the
degradation of the mitochondrial outer and inner membranes by tempo-
rally differentiated mechanisms through proteasome- and autophagy-
dependent pathways.

The process of mitophagy involves several mitochondrial ssion and
fusion proteins. As described already, hFis1 induces mitochondrial frag-
mentation and enhances mitophagy [87]. Furthermore, reduced hFis1
expression in 3-cells by RNAi decreases mitophagy and results in the ac-
cumulation of oxidized mitochondrial proteins, reduced respiration, and
impaired insulin secretion [89]. In adult cardiac myocytes, Drp1 is re-
quired for mitophagy induced by BNIP3. Overexpression of the dominant
negative form of Drp1 results in decreased mitochondrial ssion and de-
creased mitophagy [146]. Parkin-dependent ubiquitination of Mfn1 and
Mfn2 and its proteasome and p97-dependent degradation result in in-
creased mitochondrial ssion to promote mitophagy [147 149]. Reichert
and collaborators recently demonstrated that mild oxidative stress
(moderate levels of ROS) speci cally triggers mitophagy in a Drpl-
dependent manner without inducing non-selective autophagy [150].
Hypoxia induces marked accumulation of GFP-LC3 puncta and extensive
mitochondrial fragmentation. Recently, a MOM 155-amino acid protein
FUNDC1 was reported to mediate hypoxia-induced mitophagy [151]. It
is anchored to MOM through the C-terminal three transmembrane do-
mains, extruding the N-terminal segment with the LC3-intracting region
to the cytoplasm. FUNDC1 is steadily phosphorylated at Tyr18, pre-
sumably by Src-kinase, and de-phosphorylation under hypoxic
conditions enhances its interaction with LC3 for selective mitophagy.
The FUNDC1-dependent pathway is distinct from BNIP3-dependent
and hypoxia-induced mitophagy [152].

6. Regulation of mitochondrial
modi cations of Drp1

ssion by post-translational

Various stressors outside or inside cells induce mitochondrial
ssion to remodel mitochondria and alter cellular function [153].
During apoptosis, cytoplasmic Drp1 is translocated to the mitochon-
dria and induces mitochondrial fragmentation prior to caspase activa-
tion by the release of cytochrome c [154]. Such increased ssion
events are also important for the autophagic clearance of depolarized
(or dysfunctional) mitochondria [88,89]. Overexpression of wild-type
Drp1 does not lead to mitochondrial fragmentation, suggesting that a
simple alteration of Drp1 levels does not change mitochondrial s-
sion, whereas the regulation of Drp1 properties, such as mitochondrial
translocation, higher order assembly, or GTPase activity is rather critical.
Thus, regulation of Drpl and/or its interacting proteins by post-
translational modi cations is important for Drp1 cycling between the
cytosol and mitochondria (Fig. 3).

6.1. Phosphorylation
During mitosis, human Drpl is activated by the Cdk1/cyclin

B-mediated phosphorylation of Ser616 (Ser585 in rat Drp1) in the vari-
able domain. This mitotic phosphorylation promotes Drp1-dependent
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mitochondrial ssion and facilitates the proper distribution and segre-
gation of mitochondria into daughter cells [155] (Fig. 3). This Drp1 phos-
phorylation and subsequent mitochondrial targeting are regulated by a
small Ras-like GTPase RALA, its effector RALBP1, and mitotic kinase
Aurora A [156]. During metaphase, Aurora A phosphorylates Ser194 of
RAILA and alters the subcellular location of the RALA/RALBP1 complex
from the plasma membrane to the mitochondria. RALA/RALBP1 stimu-
lates Cdk1/cyclin B kinase activity at the mitochondrial membrane,
and mediates the phosphorylation of Drp1, followed by Drp1 oligomer-
ization and subsequent mitochondrial ssion [156] (Fig. 3). Further-
more, Mff RNAI, but not hFis1 RNAI, decreases the recruitment of both
RALA/RALBP1 and Drp1 to mitochondria at mitosis [156]. Under oxida-
tive stress conditions, protein kinase C6 mediates phosphorylation of
Ser579 in human Drp1 isoform 3 (corresponding to Ser616 in the
human Drp1 isoform 1), leading to mitochondrial fragmentation and
impaired mitochondrial function, which contributes to hypertension-
induced brain injury [157] (Fig. 3). As mentioned already, in pulmonary
arterial hypertension, a lethal syndrome characterized by pulmo-
nary vascular obstruction with pulmonary artery smooth muscle
hyperproliferation, mitochondrial mitotic ssion by Cdk1/cyclin
B-mediated Drp1-Ser616 phosphorylation causes hyperproliferation
of vascular smooth muscle cells leading to pulmonary arterial remodel-
ing [135]. Mdivi-1, a chemical inhibitor speci c to Drp1, reduces this
process in a dose-dependent manner.

Unlike Cdk1/cyclin B, cAMP-dependent protein kinase A (PKA)
phosphorylates Ser637 in the GED domain of human Drp1 (also re-
ferred in the literature as Ser600, 617, and 656, depending on species
and splice variants). This modi cation inhibits mitochondrial ssion
through the inhibition of the intra-molecular interaction between
GTPase and GED domains, GTPase activity, and eventually mitochon-
drial recruitment of Drp1 [158,159] (Fig. 3). Under nutrient starvation
conditions, for example, mitochondrial ssion is repressed by PKA-
dependent phosphorylation of Drp1-Ser637 due to increased cAMP
levels [160,161] and coincident dephosphorylation of Drp1-Ser616(P)
[161], resulting in mitochondrial elongation as well as a higher density
of cristae and a capacity for ef cient ATP production. This response pro-
tects mitochondria from autophagosomal degradation and sustains cell
viability (Fig. 3) [160,161]. Conversely, mitochondrial targeting of a PKA
inhibitor promotes mitochondrial fragmentation [162]. Calcineurin de-
phosphorylates Drp1-Ser637(P) and stimulates Drp1 translocation to
the mitochondria [163] (Fig. 3). In neurons and nonneuronal cells, the
A kinase anchoring protein 1 (AKAP1, also identi ed as the small
GTPase Rab32) [164] localized on the MOM is involved in the mitochon-
drial recruitment of Drp1 [162]. The PKA/AKAP1 complex regulates the
phosphorylation of Drp1-Ser637 to support mitochondrial network in-
tegrity and neuronal survival (Fig. 3). Previous experiments suggested
that the phosphorylation of Ser637 compromises mitochondrial re-
cruitment of Drp1 and stress-induced dephosphorylation in the cyto-
plasm facilitates the mitochondrial translocation of Drp1. Strack and
collaborators, however, demonstrated that the phosphorylation of
Drp1-Ser637 by PKA/AKAP1 traps Drp1 in large and slowly recycling
complexes on the mitochondria to induce mitochondrial network ex-
tension [162].

As mentioned above, in a cellular model of HD expressing
huntingtins with a longer polyglutamine repeat (mutant Htts), the in-
creased dephosphorylation of Drp1 by hyperactivation of calcineurin
induces mitochondrial ssion and cristae disruption, which leads to
an increased response to apoptotic stimuli [158,159,165]. Dephos-
phorylation of Drp1-Ser637 is also implicated in programmed necro-
sis [166]. Programmed necrosis induced by tumor necrosis factor-o
requires the activation of receptor-interacting Ser/Thr kinases RIP1
and RIP3, the mixed lineage kinase domain-like protein MLKL, and
the mitochondrial protein phosphatase PGAM5 present as two splice
variants, PGAM5L and PGAMS5S [166]. Upon necrosis induction, the
PGAM5S/PGAMS5L complex on the mitochondrial membrane recruits
Drp1 and activates its GTPase activity by the dephosphorylation of

13/03/29 17:40



29602a0773172018a02a898508¢e3aec

Oxidative stress

l

H. Otera et al. / Biochimica et Biophysi

Hypertension-induced brain injury

]

http://authors.elsevier.com/offprints/BBAMCR16880/...

ca Acta 1833 (2013) 1256-1268 1263

PKCd Drp1 activation “»

N /!

S616/S579 B-amyloid Apoptosis
resulting in synaptic loss
Aurora A Mitochondrial fragmentation J, T
RALA/RALBP1 during mitosis NOS “™ -~
(Nitoric Oxide Synthase) ~ Drp1 activation
Cdk1/cyclin B Drp1 activation 4™
N A Co44 | Co '
S616/5579 | Soteissre '
K38A A395D

1 I
N( GTPase ) | Middle c
1 337 736

$637/S600/S617/5656
mutated huntingtin —> gzllc'”e””” —| seariseoorssivisess | Seariseooiserrisess |
7N
nutrient starvation —> PKA/AKAP1 Drp1 inactivation <@~
! - ]
4 Increased mitochondrial network

Dephosphorylation of S616/S579

Protection of mitochondrial degradation

— CaMKla

— ROCK1

Ca? signaling

Hyperglycemic
stimulation

—>  S637/S600/S617/S656 —> Drp1 activation ™

by autophagosomes

!

Cell survival

l

Mitochondrial fragmentation

Fig. 3. Domain structure of Drp1 and summary of the regulation in Drp1 by post-translation.

al modi cations. Drp1 activity is regulated by various post-translational modi cations

and changes in these modi cations are related to several disorders. All amino acid numbering is based on all Drp1 splice variants in human and rat. VD, variable domain (also called

insert-B); GED, GTPase effector domain; P, phosphate; NO, nitric oxide; NOS, NO synthase.

Ser637(P). Increased Drp1 activity causes mitochondrial fragmenta-
tion, the disruption of mitochondrial functions, and entry into
programmed necrosis [166].

In contrast to the above-mentioned mode, Ca?*/calmodulin-
dependent protein kinase Ioe mediates phosphorylation of Ser600 in
human Drp1 isoform 3 (corresponding to Ser637 in human Drp1
isoform 1), which induces mitochondrial fragmentation during
voltage-dependent Ca?™ channel-associated Ca®™ signaling in cul-
tured hippocampal neurons [167] (Fig. 3). Furthermore, hyperglyce-
mia triggers the activation of Rho-associated coiled coil-containing
protein kinase 1 (ROCK1; Ser/Thr kinase; Fig. 3). It directly phosphor-
ylates Ser600 in the GED domain of mouse Drp1 isoform b (corre-
sponding to Ser 637 in human Drp1 isoform 1), which stimulates
Drp1 recruitment to the mitochondria and mitochondrial ssion,
eventually leading to diabetic nephropathy [168]. As described
above, LRRK2 regulates mitochondrial ssion by increasing the mito-
chondrial recruitment of Drpl by direct interaction with Drpl
[111,112]. LRRK2 kinase activity plays a critical role in this process,
whereas the phosphorylation sites of Drp1 or its regulating proteins
have not yet been identi ed.
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To summarize, phosphorylation of Drp1 at the same GED domain
residues is likely to have opposite effects on the mitochondrial ssion
activity in different cells or tissues, or under different culture condi-
tions. Why phosphorylation at the same site has opposite effects on
mitochondrial morphology remains to be clari ed.

6.2. S-Nitrosylation

Nitric oxide (NO) is implicated in neuronal cell survival and death
[169]. S-Nitrosylation is a ubiquitous protein modi cation in redox-
based signaling. 3-amyloid protein, a key mediator of Alzheimer's
disease, stimulates NO production to cause S-nitrosylation of Drp1 at
Cys644 within the GED domain, which enhances GTPase activity and
Drp1 oligomer formation in association with excessive mitochondrial

ssion in neurons, leading to synaptic loss and neuronal damage in the
brains of Alzheimer's disease patients, and a mutation of Cys644 pre-
vents mitochondrial fragmentation and blocks the neurotoxicity in-
duced by NO or p-amyloid protein [170] (Fig. 3), although this model
has been challenged [171]. During myogenic differentiation, the short
mitochondria in myoblast cells change into the extensively elongated
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network observed in myotubes. Palma et al. demonstrated that the inhi-
bition of Drp1-mediated mitochondrial ssion by NO generated by neu-
ronal NO synthase in a cGMP-dependent manner is critical for myogenic
differentiation [172]. The mechanistic details by which the mitochon-
drial network extension induced by the NO inhibition of Drp1 primes
myogenic differentiation are not known.

6.3. SUMOylation

The SUMO protein also affects Drp1 activity. Overexpression of
SUMOT1 stabilizes Drp1 on the mitochondrial membrane in a Bax/
Bak-dependent manner and induces mitochondrial ssion, suggesting
that SUMOylation is a step in the regulation of Drp1 during early apo-
ptosis progression [127]. Mitochondrial SUMO E3 ligase (MAPL for
mitochondrial-anchored protein ligase) has been identi ed as SUMO
E3 ligase for Drp1 and its overexpression stimulates mitochondrial

ssion [173]. Conversely, overexpression of the SUMO protease SENP5
decreases Drp1 SUMOylation (deSUMOylation) and rescues SUMO1-
induced mitochondrial ssion [174]. Interestingly, SENP5 resides
primarily within the nucleoli in addition to a pool in the cytosol in inter-
phase. In G2/M phase, nucleoli SENP5 translocates to the mitochondrial
membrane and deSUMOylates Drp1, leading to mitochondrial fragmen-
tation. Conversely, knockdown of SENP5 arrests the cell cycle precisely
at the time when the protease is translocated to the mitochondria; thus,
SENP5 is a key player in cell-cycle progression and might coordinate mi-
tochondrial division and the cell cycle through the deSUMOylation of
Drp1 [175,176]. It is not known why SENP5-dependent deSUMOylation
of Drp1 has reverse effects on mitochondrial morphology, but it might
depend on external parameters such as cellular status. Recent reports in-
dicated that MAPL is incorporated within unique, Drpl-independent,
mitochondria-derived small vesicles that are transported to peroxisomes
and the process is regulated by Vps35 involved in vesicle transport from
the endosome to the Golgi apparatus [177,178]. Communication with
peroxisomal membranes might thus in uence mitochondrial morpholo-
gy or lipid biosynthesis.

6.4. Ubiquitination

In addition to SUMOylation, ubiquitination regulates Drp1 activity.
March5 (also known as MITOL), a mitochondria-associated RING- nger
E3 ubiquitin ligase, ubiquitinates Drp1 on the MOM, although the effect
of March5-dependent ubiquitination of Drp1 on mitochondrial dynamics
remains controversial. March5 knockdown or overexpression of the
March5 mutant lacking ubiquitin ligase activity induces mitochondrial
fragmentation [179,180]. Karbowski et al., however, later demonstrated
that March5 knockdown, as well as overexpression of the RING-
inactive March5 mutant, induces abnormal mitochondrial accumulation
of Drp1 in association with abnormal mitochondrial elongation and their
interconnections [181]. In addition, March5 might play a more general
role in the quality control of mitochondria by ubiquitinating mutated,
damaged, or misfolded proteins accumulated in the MOM, as was
observed for a mutated version of SOD or expanded polyQ proteins
[182,183]. In addition, recent work revealed that March5 protects
neuronal cells from mitochondrial damage caused by the accumulation
of S-nitrosylated microtubule-associated protein 1B-light chain 1
(MAP1B-LC1). March5 ubiquitinates S-nitrosylated LC1 and promotes
its degradation via the ubiquitin-proteasome pathway [184]. Thus, the
precise roles of March5 in mitochondria still remain controversial.

6.5. O-GlucNAcylation

Gawlowski et al. recently demonstrated O-GlcNAcylation at
Thr-585 and Thr-586 in the insert B-domain (VD) of Drp1 in rat neo-
natal cardiac myocytes; the reaction was signi cantly augmented by
the inhibition of N-acetyl-glucosaminidase, leading to elevated levels
of GTP-bound active Drp1, its mitochondrial translocation, and the
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induction of mitochondrial fragmentation [185]. The reaction was
also stimulated upon shifting cells from low to high glucose medium,
concomitant with an increase in the Drp1 expression level. Interest-
ingly, this reaction paralleled a decrease in Ser637-phosphorylated
Drp1. The reaction was detected for cardiac Drp1 in type 2 diabetic
model mice and, therefore, might be linked to the development of
diabetes-induced mitochondrial dysfunction and cardiovascular com-
plications. The epistatic relation between Ser637 phosphorylation
and Thr585/586 O-GluNAcylation in the mitochondrial ssion path-
way is not known.

To summarize, how these multi-site posttranslational modi cations
on Drp1 are coordinated to regulate overall mitochondrial morphology
and cellular function remains for important future investigation.

7. Perspectives

Although key players regulating mammalian mitochondrial ssion
(Drp1, Mff, MiD49/51, and hFis1) and regulatory factors (such as
GDAP1, Endo B1, and sacsin) were identi ed over the past decade,
the exact molecular mechanisms, their coordination, and the physio-
logic functions in distinct tissues remain poorly understood compared
with the fusion reaction, i.e., functional division of Mff and MiD/MIEF
proteins in the mitochondrial recruitment of Drp1, regulation of
assembly and disassembly of the Drp1 foci, and coordination of
post-translational modi cations of Drp1 linked to cellular signaling
pathways. Furthermore, the function of hFis1 in the regulation of mi-
tochondrial dynamics and its physiologic relevance must be investi-
gated, because its contribution to Drpl-dependent mitochondrial

ssion seems to be small [72]. Although the IMM protein MTP18,
identi ed as a transcriptionally regulated target of phosphatidylinositol
3-kinase signaling, regulates mitochondrial ssion coupled with Drp1
[186,187], no further information is currently available on how
the Drpl-dependent ssion machinery of MOM cooperates with
the MTP18-dependent MIM ssion system or with other unknown
machinery.

Importantly, recent studies revealed that ER-mitochondria con-
tacts (mitochondria associated membrane structures) are involved
in regulating mitochondrial energy, lipid metabolism, calcium signal-
ing, and mitochondrial ssion, as described above [58 60,188,189].
The identi cation of additional structural components involved in
the reactions and regulation of their assembly will reveal novel as-
pects of cell physiology regulation through communication between
the mitochondria and ER.

Number of reports indicate that physiologic signi cance of mito-
chondrial ssion differs depending on the cell-types or tissues. Study-
ing how mitochondrial ssion in uences cell-speci ¢ functions in
various tissues is a challenging task. Furthermore, investigation of
the coordination of cellular signaling pathways projecting to the mito-
chondrial ssion machinery and their physiologic function will provide
exciting breakthroughs in the elds of cell biology and clinical medicine.
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