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Abstract
Modern high-speed atomic force microscopes generate significant quantities of data in a short amount of time. Each image in the

sequence has to be processed quickly and accurately in order to obtain a true representation of the sample and its changes over time.

This paper presents an automated, adaptive algorithm for the required processing of AFM images. The algorithm adaptively

corrects for both common one-dimensional distortions as well as the most common two-dimensional distortions. This method uses

an iterative thresholded processing algorithm for rapid and accurate separation of background and surface topography. This separa-

tion prevents artificial bias from topographic features and ensures the best possible coherence between the different images in a

sequence. This method is equally applicable to all channels of AFM data, and can process images in seconds.
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Introduction
Atomic force microscopes (AFMs) are a useful tool for investi-

gating nanoscale surfaces. They have applications in physics,

materials science, chemistry, biology and nanotechnology.

AFMs generate detailed three-dimensional images of surfaces

with nanometer and subnanometer resolution [1-12]. The raw

imaging data has to be post-processed to eliminate artifacts

arising from distortions inherent in the technique or a specific

instrument. Sample tilt, scanner bow and other artifacts corrupt

the true topography. Removal of these artifacts is requisite to

obtain the true topography of a sample [13-17]. In most AFM

studies, the goal is to generate a single image of a sample

surface or surfaces of multiple samples. The resulting data sets
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Figure 1: This figure shows the cumulative effects of typical distortions on model AFM data. Panels A though E show a sample with arbitrary topo-
graphic features (randomly placed and sized half spheres) and the corresponding histograms below. The first column shows the pure topography. The
second column shows the addition of random noise. The third column shows the effects of an arbitrary sample tilt. The fourth column shows the
effects of an additional second-order polynomial representing scanner bow. The fifth column adds arbitrary 1-D offsets in the fast-scan direction. Each
artifact successively broadens the peaks in the histogram. The histogram in column A uses the vertical scale on the left. The histograms columns B
through E share a common vertical scale shown on the right. All images share a common color scale shown on the right. All the histograms are
plotted over this same range.

are relatively small and easy to correct by hand. In an emerging

part of the field, the goal is no longer to see just the detailed

surface topography; but rather, to also see how this topography

changes as a function of time or treatment [18-24]. High-speed

AFM (HS-AFM) focuses on reducing imaging time to track

faster dynamics than can be observed with existing instruments

[25-29]. Where conventional AFM generates only a few

images, HS-AFM generates hundreds of images. This amount

of data creates a significant increase in the amount of image

processing needed to extract the true sample topography, which

can no longer be performed by the user on an image-by-image

basis [15,17]. In HS-AFM, there is a real need for an auto-

mated processing routine that optimizes the image processing

for each image without losing essential topographic informa-

tion. One of the most important considerations in automating

processing is that it must not introduce processing artifacts, and

it must maintain coherence between images in a dataset to allow

for rapid comparisons between frames [30,31]. Automated,

AFM quality-control check in semiconductors and other

nanotechnologies [32-34] also creates large data sets, which

would also benefit from reliable automated image processing.

In order to automate the image processing, it is important to

define a metric by which the success of the image processing

can be judged, and for which the processing is optimized. In the

next sections we will evaluate the source and effect of typical

AFM image distortions and derive a suitable optimization

metric.

Sources of inherent distortions
All AFM images will contain artifacts in the x–y-direction as

well as the z-direction. This work will address only the distor-

tions found in the z-direction. There are two fundamental

classes of image distortions in the z-direction, i.e., 2-D distor-

tions and 1-D distortions. Both of these distortions are well-

known and have been commented on since the earliest proto-

types. 2-D distortions manifest over the whole image and

deform 2-D surfaces into 3-D. The most common example of

this is sample tilt. Tilting the sample normal relative to the

scanner normal gives the entire image an apparent tilt. Piezo

tube scanners (which are often used in AFM instruments) also

generate inherent distortions in the image, creating an add-

itional bow in the apparent topography [13]. Some of the early

work in the field addresses the need to correct these back-

ground distortions appropriately by fitting only the background

regions to a polynomial of the correct order [35]. 1-D distor-

tions cause relative offsets from scan line to scan line. The

sources of these distortions include laser-mode hopping and

changes in the tip–sample interaction. These 1-D distortions

cause apparent discontinuities in the topography of the sample,

but do not represent an actual topographic feature. Most impor-

tantly, 1-D distortions generally appear as offsets in the z-data.

Potential corrections for these types of artifacts have been

addressed well in a direct fashion from starting principals by

Starink and Jovin [35], and again in a less direct fashion that

has some potential pitfalls with an emphasis on biological

samples [36]. Figure 1 shows how these types of artifacts dis-

tort an artificial image along with corresponding histograms. In

Figure 1A, half-spheres of arbitrary size were placed randomly

within the image. A histogram of the z-heights in the image

shows a spike at the background level, and a distribution of

heights from the sphere (along the axis x-axis). Figure 1B

shows the addition of a small amount of random noise added in

the z-direction. This noise leads to broadening of the histogram

peak. The peak now appears Gaussian with a small distribution.
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Figure 1C imparts a small tilt to the sample (less than 10 nm

over 3 µm in either direction, which is very good for most

samples). The background peak has been broadened so far as to

be nearly indistinguishable. Figure 1D adds a second-order

polynomial distortion to simulate scanner bow (less than 10 nm

over the scan range, which is well within reason for most

AFMs). The peak is no longer visible in the histogram. Finally,

Figure 1E adds random vertical offsets to some of the scan

lines. These offsets simulate the sorts of line skips commonly

observed while imaging. As can be seen from the histograms,

each successive distortion broadens the peak in the histogram.

We will, therefore, test the suitability of calculating the distribu-

tion of the histogram as a metric for judging the success of auto-

mated-image-processing steps.

Basic requirements for successful image
correction
The goal of the AFM image-processing algorithm described in

this paper is to remove imaging artifacts and generate the best

possible representation of the true sample topography. The

achievement of this goal has one basic prerequisite, an area that

can be used as a reference geometry. In most cases, this will be

an area that can be considered as flat in the true topography of

the sample. The image-processing algorithm then attempts to

extract the global distortions in the image from observations of

the flat reference region. These global distortions are subtracted

from the complete image. In practice, this criterion is often met

in AFM images, since the sample preparation generally utilizes

flat substrates, such as mica or silicon wafers. In the case of

semiconductor processing, the reference geometry could also be

a specific area of the processed device that is flat or has a

known shape. For the purpose of this work, we use the assump-

tion that there is some part in the image that corresponds to a

flat background, since this is the most common case. The algo-

rithm automatically determines this background region and

performs the necessary background correction. The algorithm

uses minimization of the standard deviation of the image

histogram to judge the success of the background detection and

the image processing.

Image term description
Throughout the rest of this paper we will use the following

conventions when referring to images for the sake of clarity.

First, an image is defined as an array of scan lines along the

slow scan axis,

(1)

where each scan line is an array of pixels in the image along the

fast scan axis.

(2)

Standard deviation as a metric for image flat-
ness
In order to show that the standard deviation of an image is a

suitable metric for monitoring the progress of image flattening

we can use uncertainty propagation. We can start by describing

the AFM image, , as the sum of two height fields, the sample

topography, , and the inherent geometric distortions, :

(3)

The square variance of the image can be written as:

(4)

The equation simplifies to the final form because the covari-

ance of the two fields is zero (they are uncorrelated variables

for the types of distortions described in this paper). This means

that ; thus, the geometric distortions will always

broaden the distribution of observed heights relative to the true

sample topography. This also means that as long as the

processing steps only affect  (flattening is only performed on

truly flat regions, and not real topography), the minimization of

 will improve the image.

Commonly used methods for correction of
inherent distortions
The goal of AFM image processing is to correct the inherent

distortions mentioned above and recover an accurate representa-

tion of the undistorted surface topography. A simple, often

used, method is 1-D line fitting, which is an effective way to get

a rough representation of the surface by removing much of the

scanner tilt and bow at the expense of some induced artifacts.

Methods for the subtraction of 2-D distortions, which add less

artifacts than does 1-D line fitting, are 2-D polynomial fits. 2-D

polynomial fits can be performed by using either the whole

figure for the fit, or only certain regions of the image deter-

mined by using thresholds. Figure 2 shows a comparison of

different processing methods on a standard calibration grating

as well as on a lipid bilayer of mixed composition. Figure 2A

and Figure 2E show the starting data. If present, the 1-D errors

must be corrected first because any attempts to correct for the

2-D distortions will be biased by these 1-D offsets. To do this,

the offset caused by the 1-D distortions is removed from each

line. Higher order 1-D operations, such as line fits or higher

order polynomial subtraction, should not be used to correct the
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Figure 2: Panel A shows the raw data of a calibration grating. Panel B shows the result of line-by-line polynomial subtraction on the grating. Panel C
shows global 2-D polynomial subtraction. Panel D shows a thresholded 2-D polynomial subtraction excluding the pits from the polynomial fit before
subtraction. The histograms of each image are shown below. The vertical axis is the same for each histogram. In both the images, and the
histograms, the scale has been focused on the upper portion of the grid in order to highlight the distortions in the image. Panel E shows the raw data
of a mixed lipid bilayer on mica. Panel F shows the results of line-by-line second-order polynomial subtraction. Panel G shows 1-D artifact correction
followed by 2-D second-order polynomial subtraction. Panel H shows the results of 1-D artifact correction followed by 2-D second-order polynomial
subtraction by using the highest lipid domain to calculate the background for removal. The histograms of each image are shown below. The vertical
axis is the same for each histogram. The median of each panel has been set to zero to allow visual comparisons. Panels D and H both show improve-
ments in the representation of the surface in comparison to the other results. These improvements are shown clearly in the histograms. The grid was
imaged under tapping mode in air. The lipid sample is the height data from QNM mode in fluid. The vertical scales of each image are in nanometers.

inherent 2-D distortions because they will destroy interline rela-

tionships in the data, and can generate false artifacts between

lines [13,31,37], see Figure 2B and Figure 2F which show the

results of 1-D second-order polynomial removal. This line-by-

line polynomial subtraction generates many artifacts in the data,

for example the surface surrounding the pits appears raised

along the fast scan axis in Figure 2B, and continuous levels in

Figure 2F have offsets from line to line and are not perpendic-

ular to the image plane. Figure 2C and Figure 2G show the

removal of 1-D offsets followed by a second-order background

polynomial removal. For the grid, there is a significant

improvement in the representation of the surface. In Figure 2F,

the sample topography is of the same order as the 2-D distor-

tions. While 2-D operations are less prone to induce artifacts,

performing a global 2-D polynomial fit and background

subtraction leaves significant residual distortions (Figure 2G).

These distortions can be avoided by using a thresholded flat-

tening, instead of a global flattening Figure 2D and Figure 2H

(details discussed in Section Results and Discussion, “Algo-

rithm description”). We conclude that a suitable way to process

the images is to first determine and subtract the line-by-line

offsets. Second, fit only the part of the image that is the flat

background with a 2-D polynomial. Finally, subtract the calcu-

lated 2-D polynomial from the entire image. For an automated

algorithm, the problem reduces to accurately distinguishing the

flat background from the sample topography. In the rest of this

paper, we describe a method for iteratively determining both the

flat background, and the line-by-line offsets. Once these quan-

tities are known, subtracting the line offsets and correcting the

2-D distortions can be performed with only two image-

processing steps on the raw data.

Results and Discussion
1 Algorithm description
Figure 3 shows a general flow diagram of the processing algo-

rithm from data import to final output. The algorithm has three

major blocks: (a) identify the background region, generate a

mask of the background region and estimate the polynomial

background; (b) determine 1-D background offsets from the

raw data within the mask; and (c) subtract 1-D offsets from the

raw data followed by a single masked background flattening.

This final step ensures that a minimal number of modifications
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Figure 3: This figure outlines how an image is corrected automatically.
There are three main operational blocks used in the process. Each
block starts with the raw data as input and generates unique outputs.
The first major block applies a series of 1-D offset corrections and
thresholded polynomial background subtractions to generate a masked
image of the region to be flattened as well as an estimate of the poly-
nomial background. The second block subtracts this estimated back-
ground from the raw data and runs thorough a series of median correc-
tions and flattening steps only on the data within the masks. This
sequence determines the unique 1-D offset for each line. The third
block subtracts these 1-D offsets from the raw data and performs a
single polynomial fitting on the data within the mask. This background
is subtracted from the entire image (raw-offsets). Finally, the height of
the background is shifted to a defined reference value to ensure conti-
nuity within the image sequence. All vertical scales in the figure are in
nanometers.

are performed on the raw data to generate the final output. The

final output is offset to consistent values and exported for later

use. The results of the automated processing routine on an

example lipid bilayer of mixed composition are shown as the

inputs and outputs of each major block. Each block will be

discussed separately in detail.

1.1 Identify the background, generate a mask, esti-
mate the polynomial background
The purpose of this section is to identify the background region

in the image and estimate the initial polynomial background. In

order to accomplish this, the algorithm does the following: (a)

roughly corrects 1-D offsets present in the image (scars and

offsets); (b) monitors the distribution of height values in the

image to track the progress of each step, and rejects steps that

broaden the distribution; (c) intelligently removes global tilt and

scanner bow (often greater than sample topography); (d) adap-

tively identifies the background; (e) fits 2-D polynomials to the

identified background; and (f) removes these fitted polynomials

from the image.

1.1.1 Scar identification and median correction: The first

process is to import the data from the binary format and convert

it into relevant units. The standard deviation of the image is

calculated as a reference point. Figure 4A shows the data as

captured. Sample tilt dominates the image.

A basic scar identification and correction step is used to mini-

mize the influence of the scars on the correction of 1-D arti-

facts. Scars are identified by detecting sections within a line Ln

that are greater than surrounding lines by more than two times

the standard deviation of the difference in medians.

(Equation 5). Then each data point identified within a scar is

replaced with the median of five neighboring data points in the

last line before the scar:

(5)

diff(X) calculates differences between adjacent elements of X. If

X is an array, then diff(X) returns an array, one element shorter

than X, of differences between adjacent elements: [X2 − X1,

X3 − X2,…,Xn − Xn − 1] of all lines in the image.

1-D artifacts, which introduce relative offsets, are corrected for

by using median corrections. First, a line-by-line median-offset

correction is applied to all lines. For each scan line, Ln, the

median of the scan line is subtracted from all the values in that

scan line (Equation 6).
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Figure 4: This figure shows the structure of the processing algorithms
for identifying the region to be flattened and estimating the back-
ground. An initial scar detection followed by median correction and a
median-difference correction is applied. This corrects for line skips in
the source image. Following the 1-D artifact correction, a global correc-
tion is applied. The primary function is to remove overall sample tilt
and some second-order distortions. The image is then adaptively
thresholded and a 2-D polynomial is subtracted. After this step there is
an optional second median difference correction to correct discontinu-
ities missed in the previous median-difference correction. A second
round of thresholded processing corrects for residual image distor-
tions. After each step that manipulates data, i.e., the first median
correction through to the final thresholded processing, a weighted
improvement check ensures that the step had improved the image. In
the case when a step degrades the image, the algorithm passes the
previous result. The final mask generated after the last successful step
as well as the sum background of all successful flattening steps is
passed on to the next block of the algorithm. The right half of the figure
shows the corresponding images and histograms for each step.
Gaussian fits to the two distinct levels are shown with dotted blue
curves. The AFM data in this figure was collected in QNM mode in
fluid. The vertical scale in all images and the horizontal scale in all
histograms is in nanometers.

(6)

Second, a weighted median-difference correction corrects arti-

facts from the median correction caused by differences in

topography in the image. This process is only performed on

lines not previously identified as scars. The median difference

correction calculates the median of the difference between two

consecutive scan lines excluding outliers greater than two times

the standard deviation of the differences between scan lines.

This outlier exclusion reduces influence from edges within a

scan line. The median difference value is subtracted from all the

values within the second scan line, see Equation 7.

(7)

Third, an additional iterative refinement minimizes residual

offsets generated from changes in topography. This subtracts a

running average of the median difference between the scan line

and up to the preceding k scan lines within a defined threshold.

This does two things: one, it further excludes edge effects along

topographic contours; and, two, it maintains continuity over

long distances in the image and prevents the build up of high-

frequency errors from scan line to scan line. This process runs

iteratively in alternating directions. Currently, the algorithm

uses four iterations with a maximum span, k, equal to 15 lines.

(8)

These steps handle discontinuities in the original image that do

not represent actual topography. In cases where there is signifi-

cant topographic variation parallel to the fast scan axis, i.e., a

calibration structure, these corrections can actually introduce

significant artifacts into the data and should not be used. In

these cases, these 1-D corrections can be turned off in the algo-

rithm. In Figure 4B, the initial median correction improves the
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image by removing both the 1-D artifacts as well as most of the

tilt in the vertical direction. It is important to note, that in all

these operations, there is always only a constant offset

subtracted from all points in a line, and not a linear fit or higher

polynomial. Such higher-order 1-D corrections can create arti-

facts that cannot be undone at a later stage.

1.1.2 2-D Tilt removal: The third process is a basic polyno-

mial surface fit of either first or second order and subsequent

removal to facilitate the thresholding process by removing

enough distortion to make it possible to separate topographic

features from the background. Primarily, this removes sample

tilt, which has a significant contribution to the variation in the

observed heights. In cases of very flat samples where the

changes of the topography are on the same order or smaller than

the sample tilt or scanner bow, removal of a second-order

surface generally improves the separation of the topography

from the background. The algorithm does a separate first-order

and second-order removal process and calculates the standard

deviation of both results. The standard deviations are compared

to the standard deviation after the median correction. The image

with the lowest standard deviation progresses to the next step.

Figure 4C shows the results of the first, unthresholded back-

ground correction. A second-order polynomial removal impro-

ved the image the most. After this step, the two distinct levels in

the system manifest in both the image and the corresponding

histogram. Some residual tilt remains in the image, as the

bottom is somewhat higher than the top.

1.1.3 Thresholded flattening: The fourth process is an adap-

tive image thresholding algorithm and background removal. In

order to calculate the appropriate threshold for the 2-D back-

ground removal, the algorithm identifies discrete peaks in the

histogram corresponding to different topographic levels in the

image. In the absence of discrete levels, only one general peak

is used. The histogram is fit to a summation of m ≤ 8 Gaussian

functions centered at each peak, zi, where i ranges from 1 to m.

In the case that the number of levels is greater than m, only m

peaks with the greatest area will be fit. From the Gaussian fit,

the standard deviations, σi, and areas covered, Ai, are calculated.

Nominally, the threshold for the 2-D surface fitting is zj ± nσj,

where n is a user-defined range and j is the peak used for the

2-D surface fit. (The algorithm default is to use the highest peak

found in the histogram. Based on prior knowledge of the

sample, the user can override this default and specify which

peak to fit.) Since this span can include contributions from other

peaks, the actual span can be narrowed to the intersection of the

jth peak with the next closest peak. All the data within the

threshold is fit to a polynomial surface of a given order (up to

fifth). The extrapolated background is subtracted from the

whole image.

1.1.4 Improvement check: In order to test if a particular step

has improved the image, the peak detection and Gaussian fit is

repeated on a histogram of the corrected data. While the thresh-

olded flattening only operates on a single level, the improve-

ment check monitors the progress of all the fit peaks. This

allows the algorithm to follow the progress of a sample with

many levels. The criteria for this conditional check are:

1. The total area of the fits must not decrease by more than

a small tolerance with respect to the image before the

processing step.

2. A weighted average, , of the standard

deviations is computed both before and after. This term

must not increase by more than a small threshold.

If either of these conditions fails, the algorithm rejects the

process and passes the previous image to the next step. In the

case of the initial background removal the whole image is used.

After the initial background removal, only regions identified as

independent levels are considered. The user defines the number

of levels present in the system. In the case of the lipids or grids,

both independent levels are considered; whereas, in the case of

a random sample on a substrate, only the substrate would be

considered. Figure 4D shows the results of the first thresholded

processing. This results in a significant improvement of the

overall image flatness, shown in both the image and histogram.

The algorithm based the thresholding on the higher level since it

had the greatest area.

1.2 Determine 1-D background offsets
The purpose of this section is to accurately determine the 1-D

offsets that exist from line to line. While the operations used

above in Section 1.1 do a reasonable job, they are still prone to

influence from sample topography. In order to minimize the

influence of topography the algorithm performs its corrections

only on the masked background region determined in Section

1.1. First, the estimated background from Section 1.1 is

subtracted from the raw data in order to generate a reasonable

starting point for the first masked median correction

(Figure 5A). The masked median correction subtracts the

median of all the data within the mask on a given line, from that

line (Figure 5B).

(9)

The second step is an additional polynomial flattening of the

masked data in order to ensure a flat background (Figure 5C).

This step is followed by an additional masked median correc-

tion (Figure 5D). Following each step, a check is performed to

ensure that the step decreased the standard deviation of the data
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Figure 5: This figure shows the structure used to determine the 1-D
offsets present in the image. First, the estimated background from the
prior block is subtracted from the raw image. Second, a median correc-
tion is performed on the data within the mask. Third, an additional poly-
nomial flattening on the masked region reduces the influence from the
topography. Fourth, a second masked median correction refines the
calculated offsets. After each step, except the initial background
subtraction, an improvement check on the masked region verifies that
the step improved the image. The final offsets are determined and
passed through to the next section. The vertical scale of all images
and horizontal scales of all histograms are in nanometers.

within the mask. Finally, the cumulative offsets are calculated

for each line. In the case where a line has no pixels contained in

the mask, the algorithm calculates the offset from the final

output of Section 1.1 instead. These final outputs are passed on

to the next section.

1.3 Subtract offsets, masked flattening, reference
shift data
This final section of the algorithm subtracts the offsets calcu-

lated in Section 1.2 from the raw data (Figure 6A). Next, the

data within the mask calculated in Section 1.1 is fit to a single

2-D polynomial. The resulting polynomial is subtracted from all

Figure 6: This figure shows the steps used for the final image correc-
tion. First, the 1-D offsets are subtracted from the raw image. Second,
a final masked polynomial flattening is performed. Third, a reference
offset is added to all data in the image prior to export. The vertical
scale of all images and horizontal scales of all histograms are in
nanometers.

the data (Figure 6B). A final histogram is computed and fit with

Gaussians. The difference between the defined background

reference height and the fitted center of the background peak in

the final histogram is added to all the data. This final data is

exported for future use.

2 Processing high-speed dynamic images in
biological systems
2.1 HS-specific artifacts
Operating AFMs at high speeds has the potential to generate

new distortions not normally observed at conventional speeds.

Such artifacts include structural scanner resonances coupling

into the sample topography. These sorts of spurious resonances

can be observed in piezo tube scanners as a turn-around ripple

in the images (damped oscillations of a given frequency). This

stems from excitations in the lateral direction coupling into the

vertical motion. Because the scanner used in these experiments

has a relatively low structural resonance, this turn-around can

be excited to a substantial extent at even moderate scan speeds.

Given that the amplitude of the turnaround ripple in tube scan-

ners like the one used in these experiments can easily be greater

than the topography of the system, the turn-around ripple must

be dealt with in some fashion. The best way is to avoid it alto-

gether through either input shaping [38-41] of the drive signals

or through electrical damping of the resonances [42]. For our

experiments, we use a self optimizing method that determines

the scanner resonances and compensates them with an input
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Figure 7: Comparison of unthresholded 2-D background removal to the full, iterative thresholded background removal for a sequence of HS-AFM
data. The upper row shows the unthresholded result. The fully automated processing using the lower level for the background calculation is shown in
the middle row. In the bottom row, an additional vertical median correction has been used. This corrects some of the residual artifacts from the turn-
around ripple of the scanner, which are not corrected with the resonance compensator described by Burns et al. [38]. Each image is a 4 µm image
with 256 lines captured at 78 lines/second while tapping in fluid. These imaging parameters give an approximate acquisition of 3 seconds per image.
Each frame in this figure represents every third image in the overall sequence, approximately 9 seconds apart. (Full image sequence as Figure S1 in
Supporting Information File 1 or in movie format as Supporting Information File 2). In the unthresholded sequence, many artifacts remain, making it
difficult to track the progression. In the fully automated sequence, the automated algorithm does a much better job of correcting the data and
outputting consistent images for comparison.

shaper [38]. Using this resonance-compensator system, the

amplitude of the turn-around ripple in the image can be nearly

eliminated in a fashion that is sample independent and

completely transparent to the rest of the experiment. While this

method works very well, some residual, subnanometer distor-

tions can remain.

2.2 Vertical median correction
While model-based filters do a very good job of reducing the

amplitude of the turn-around ripple, they may not completely

eliminate it. This is especially problematic on very flat samples

with nanometer scale topography, where a subnanometer

distortion is a significant part of the overall topography, such as

in the images of lipid membranes shown in Figure 7. This

residual turn-around ripple can be seen on the right-hand side

of the images in the middle row. The turn-around ripple appears

on the right side of the image because retrace images are being

shown. This residual error can be corrected by using an

additional vertical median correction on the masked data

after the final background subtraction in Section 1.3 and

before the final offset. This vertical median correction is exactly

the same as Equation 9, but it runs in the perpendicular direc-

tion. This correction is only applicable to HS-AFM data that

exhibits some turn-around ripple and should not be used other-

wise.

Figure 7 demonstrates the utility of the automated processing

algorithm on a dynamic model biological system. The sample

consists of two phase-segregated lipids, DLPC (blue) and DPPC

(gold). The image sequence shows the rapid degradation of the

DPPC domains following rapid heating from interactions with

the AFM tip. The sequence shows every third image. The upper

sequence shows the results of standard unthresholded flattening

and the lower sequence shows the results of the fully auto-

mated processing. Both sequences use the same polynomial

background orders. The fully automated processing does a

much better job of identifying the background and flattening it

correctly. This makes it much easier to follow the changes in
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the system. Moreover, this automated flattening process

allowed for a significant improvement in the speed of

processing without sacrificing the quality of the results. The

images shown in Figure 7 and Figure S1 in Supporting Informa-

tion File 1 are only a few sample images from a much longer

image sequence many hundreds of images long. The entire

sequence was processed in only a few hours, representing a

significant time saving compared to hand-correcting each

image.

Conclusion
We have developed an automated, adaptive image-processing

algorithm for high-speed AFM image sequences. This is

achieved by identifying the background region and determining

line-by-line offsets using an iterative process. The output of this

iterative process is used to perform a single line-by-line offset

correction, followed by a single 2-D polynomial-background

removal step. This order of operations ensures that a minimal

amount of manipulation is performed on the raw data to

generate the final output. During the iterative background-iden-

tification process, the algorithm uses the standard deviation of

one or more peaks in the height histogram of the image as a

metric for determining the accuracy of the thresholded back-

ground identification. A similar metric is used to determine the

accuracy of the line-by-line offset correction. The algorithm is

specifically tailored to image sequences, ensuring consistent

processing, offsets and contrast settings between frames in

AFM movies in a short time period. On a standard PC, each

channel takes about 10 seconds to process. This algorithm can

be used on AFM data from most modes. We have demonstrated

its applicability to data acquired in tapping mode in air, tapping

mode in fluid, and quantitative nanomechanical mapping

(QNM) in fluid. Finally, this algorithm can also be applied to

strongly stepped samples, such as atomic layers. Figure S1 in

Supporting Information File 1 shows the correction of samples

with four and eight distinct levels. In both cases, the error is less

than the noise in the image. With the release of modern

HS-AFM systems by commercial manufacturers, this sort of

automated processing will provide a significant benefit to this

emerging research area in surface science and related fields.

The algorithm and an associated graphical user interface are

available at http://lbni.epfl.ch under the software section.

Experimental
Lipid preparation
Small unilamelar vesicle mixtures of 1,2-dilauroyl-sn-glycero-

3-phosphocholine (DLPC) and 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) were prepared by sonication. Both

lipid types were purchased from Avanti Polar Lipids Incorpo-

rated (Alabaster, AL, USA). Lipid powders were mixed prior to

vesicle formation at a nominal molar ratio of 1:2, DLPC/DPPC.

Vesicle solutions at 1 mg/mL were formed by transferring an

appropriate mass of lipid into glass vials and dissolved with

chloroform. The chloroform was evaporated off with dry

nitrogen gas, leaving a thin film on the glass vial. The film was

hydrated with Milli-Q water (Millipore, Billerica, MA, USA),

generating large multilaminar vesicles (LMVs). The LMVs

were then sonicated with a probe sonicator (BioLogics Inc,

Manassas, VA, USA) to generate small unilaminar vesicles

(SUVs). The SUVs were centrifuged to remove metal particles

left from the probe sonicator. A 35 µL amount of the lipid

preparation was warmed to 37 °C and deposited onto freshly

cleaved mica surfaces, forming bilayers through vesicle fusion.

Surfaces were allowed to incubate for at least a half hour in a

humid environment at room temperature.

AFM imaging in air
Images were captured on a Multimode system with an

E-scanner (Bruker Nano: Santa Barbara, CA, USA). Standard

TESPA (Bruker AFM Probes: Camarillo, CA, USA) tapping

cantilevers were used. The cantilever was driven at 348.44 kHz

with an amplitude of 20.14 mV. Images at a size of 14.25 µm

were captured at 512 × 512 pixels with a line rate of 1.5 lines/

second. The data shown in the paper are crops from the center

of the acquired image.

Quantitative Nanomechanical Mapping
(QNM) – AFM imaging in fluid
Images were captured on a Multimode system with an

E-scanner (Bruker Nano: Santa Barbara, CA, USA). A standard

DNP-A (Bruker AFM Probes: Camarillo, CA, USA) cantilever

was used with a spring constant of 0.40 N/m. Images at 5 µm

were captured at 512 × 512 pixels with a line rate of 1 Hz.

Manual control of the QNM parameters was used to minimize

the applied force on the sample and the QNM drive amplitude.

Each channel’s acquired limits were minimized to limit bit

quantization in the DSP.

HS-AFM imaging in fluid
Images were captured on a modified Multimode system with an

E-scanner (Bruker Nano: Santa Barbara, CA, USA). A

customized small-lever head allowed for the use of small

cantilevers (SCL-Sensor.Tech., Vienna, Austria). The cantilever

had a resonance frequency in fluid of 266.49 kHz, a spring

constant of 0.54 N/m and a Q value of 2.68. Square areas of

4 µm were scanned at 78 lines/second at 256 × 256 pixels

giving an approximate image acquisition time of 3 seconds/

image. The fast-scan drive signal was passed through a custom

filter designed to minimize the excitation of the tube scanner

resonance [38]. The internal PID feedback of the Nanoscope 5

controller was bypassed with a Labview controlled FPGA based

PID with a loop rate of 575 kHz.

http://lbni.epfl.ch
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Supporting Information
Supporting Information File 1
Further details on imaging and image processing

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-3-84-S1.pdf]

Supporting Information File 2
Image sequence movie

The movie shows the entire image sequence of the fully

corrected data, with vertical median correction, from

Figure 7. Each frame is approximately three seconds apart.

The vertical scale of all images is in nanometers.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-3-84-S2.mov]

Supporting Information File 3
User Manual

The user manual presented here contains a brief description

of how to use the program and the parameters available for

each channel.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-3-84-S3.pdf]
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