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High-speed atomic force microscopy:
Structure and dynamics of single proteins
Ignacio Casuso, Felix Rico and Simon Scheuring
For surface analysis of biological molecules, atomic force

microscopy (AFM) is an appealing technique combining data

acquisition under physiological conditions, for example buffer

solution, room temperature and ambient pressure, and high

resolution. However, a key feature of life, dynamics, could not

be assessed until recently because of the slowness of

conventional AFM setups. Thus, for observing bio-molecular

processes, the gain of image acquisition speed signifies a key

progress. Here, we review the development and recent

achievements using high-speed atomic force microscopy (HS-

AFM). The HS-AFM is now the only technique to assess

structure and dynamics of single molecules, revealing

molecular motor action and diffusion dynamics. From this

imaging data, watching molecules at work, novel and direct

insights could be gained concerning the structure, dynamics

and function relationship at the single bio-molecule level.
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Introduction
The atomic force microscope (AFM; [1]) is able to resolve

atoms on solid surfaces [2]. Since the development of a

fluid cell [3], AFM has become a powerful structural

analysis tool in biology [4]. It has been extensively used

for imaging protein surface structure under close-to-native

conditions and also as a force probe tool [5]. Therefore, it

has become a complementary technique to X-ray crystal-

lography, NMR and electron microscopy [6].

As main advantages, (i) the high signal-to-noise ratio

allowing single molecule imaging [7,8] and (ii) the phys-

iological environment, ambient temperature and pres-

sure in liquid [6], have been recognized. These two

advantages are trump cards compared to electron micro-

scopy, which works under vacuum conditions and low

temperatures and needs to make use of extensive image
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processing for structure assessment. These two advan-

tages of the AFM would in principle also allow watching

single molecules at work, but unfortunately conventional

AFM setups with image acquisition rates of several

minutes (Figure 1, left) impeded the analysis of relevant

biological dynamic processes.

Around the year 2000, first reports have been made about

AFMs with increased scan rate [9,10��,11,12��]. Key

adaptations for scan speed increase comprise the minia-

turization of the moving parts of the AFM setup, these are

the scanner and the cantilever, because the speed at

which elements can be moved with accuracy is pro-

portional to the inverse of the square root of their mass.

First, small and light cantilevers have been developed

that have typically resonance frequencies (v0) between

500 kHz and 1 MHz in liquid [9]. Indeed, the resonance

frequency depends on the spring constant (k) and the

mass (m) of the cantilever, following:

v0 ¼
ffiffiffiffi
k

m

r
with; k ¼ Ewt3

4L3
(1)

where the spring constant depends on the elastic proper-

ties (E), the width (w), and strongly on the thickness (t)
and length (L) of the cantilever. Given that softness, low

spring constant, is a prerequisite for bio-molecular ima-

ging, the length and mass had to be significantly reduced.

HS-AFM cantilevers have typical lengths of 5–10 mm

(conventional cantilevers of 100–200 mm [13]). Another

advantage of such short levers is the sensitivity of the

optical beam detection [14] system, consisting of a laser

focused on and reflected by the backside of the cantilever

and detected by a split photodiode.

Second, scanners composed of individual X, Y, and Z
piezos have been designed. These scanners must fulfil

several criteria, such as high resonance frequency, few

resonant peaks at similar frequency, small quality factor,

small cross-talk, while assuring a reasonable scan range

sufficient for bio-molecular surface analysis [15,16]. For

stability, HS-AFM scanners contain dummy piezo

elements (these are piezos that counterbalance the move-

ment of the essential piezos by moving into the opposite

direction) and a dummy sample stage [12��]. Crucial for

fast surface contouring is a small Z-piezo with high

resonance frequency around 400 kHz [16,17]. The reac-

tion response of the Z-piezo is accelerated using a

dynamic feedback-controller that alters automatically
www.sciencedirect.com
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High-speed atomic force microscopes (HS-AFM) acquire topographic data with an approximate three orders of magnitude increased speed compared

to conventional atomic force microscope (AFM) setups. Hence while taking individual image frames with conventional AFMs (frame acquisition time: 1–

5 min; image shows the photosynthetic apparatus of Rhodospirillum photometricum adapted from Refs. [8,13]), now movies can be acquired using

HS-AFMs (frame acquisition time: 50–500 ms; image series shows OmpF trimers adapted from Ref. [20]). Thus, using HS-AFM, single molecule

dynamics can be captured.
the gain parameters to follow steep surface features and

with a bandwidth of about 100 kHz on faint surface

corrugation in the nanometer range, for example protein

size [18]. All the developments have been described in

detail in Ref. [19].

Featuring these key elements and some more adap-

tations it is now possible to acquire movies at rates of

about 10 frames/s and about 200 data points squared per

frame. For bio-molecular observations where a scan area

of about 100 nm is requested, the achievable resolution is

hence 1 nm, allowing the visualization of single mol-

ecules processes at submolecular resolution  (Figure 1,

right). These features allow for the first time the con-

comitant observation of single molecules at work under

close to physiological conditions, providing a fantastic

opportunity for researchers to establish structure-func-

tion relationships and to determine biophysical

parameters of single molecules previously inaccessible

by other techniques.

Life is dynamic
Three qualities define life: reproduction, self-sustainable

metabolism and mutation. These processes imply

dynamic action, such as enzyme catalysis and transport

function by molecular machines. These processes are

often driven by cellular energy, while other processes

essential for life, like diffusion, are thermally driven.

Studying the dynamics is therefore essential for the

comprehension of biology.

Biological structure can be studied by light microscopy,

electron microscopy, NMR and X-ray diffraction from

cells to molecules. In contrast, dynamics remained only

accessible at low resolution using video light microscopy
www.sciencedirect.com 
of labelled molecules. The HS-AFM with its capability of

observing molecules at work opens therefore a new

research area that will have an important impact in

structural biology, biophysics and biochemistry.

Molecular motors at work

Molecular motors use cellular energy stored in the form of

ATP or GTP to perform work or transform potential

energies such as membrane gradients into transport or

storable energy forms [21]. Paradigm molecular motors

are proteins of the Myosin family [22]. They interact with

elements of the cytoskeleton (actin), mediate contraction

and transport cargo along these filaments inside cells.

Researchers have early been attracted by these molecules

because of their structure with two ‘legs’ and ‘feet’, as

visualized early by electron microscopy [23], suggesting a

walking movement not so different from humans walking.

Single molecule tracking experiments confirmed that

myosins walk in discrete steps. However, the detailed

mechanism of the movement of the molecules eluded

investigators for a while and several walking hypotheses

have been discussed [24]. Now, HS-AFM has been used

to study the walking mechanism of myosin-V along actin

filaments at the single molecule level with unprece-

dented resolution, confirming indirectly measured mech-

anisms and providing novel insights to myosin-V function

(Figure 2). It has been shown that the myosin-V takes

�36 nm steps at an ATP-dependent velocity of maxi-

mally �400 nm/s. The walking mechanism is hand-over-

hand and implies the leg of the leading head acting like a

swinging lever (Figure 2b) and a rotation of the leading

head [25��]. Foot ‘stomping’, detachment and reattach-

ment of a foot from and to the actin filament were

captured. In some cases the ‘stomping’ was accompanied

by a slide of the foot, where it occupies a slightly shifted
Current Opinion in Chemical Biology 2011, 15:704–709
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Figure 2
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Molecular motor motion dynamics of myosin-V walking along an actin filament. Movie parameters are: 147 ms/frame (6.8 frames/s), 130 nm � 65 nm

scan size at 80 � 40 pixels. (a)–(d) and (f) Full step of myosin-V motor. (e) Sliding of trailing head (arrows in (d) and (e)).

Figure adapted from Ref. [25��].
position on the actin filament after ‘stomping’ (Figure 2e).

Occasionally, unwinding of the coiled–coiled domain at

the connection of the two legs of myosin-V has been

observed [25��].

Unlabelled membrane protein diffusion in the molecular

environment

Membrane diffusion phenomena have been early and

largely studied by fluorescence recovery after photo-

bleaching (FRAP) studies [26]. This technique requires

fluorescently labelled membrane molecules that are

distributed and bleached over large areas, and the

recovery of fluorescence is observed, indirectly docu-

menting that non-bleached molecules diffuse into the

prior bleached area. This is an ensemble technique and

provided early valuable data about differences of mol-

ecular diffusion behaviour, however, today we know that

this ensemble technique could not assess non-linear

diffusion behaviour or differences of diffusion of single

molecules [27].

Single molecule fluorescence labelling and single particle

tracking have shaped during the past ten years our view of

the membrane structure [28�,29�]. Single membrane com-

ponents are labelled via an antibody carrying a fluor-

escence dye or a quantum dot. Given only few

molecules are labelled they can be individually tracked

fitting the fluorescence signal that has a size about 50

times larger than a molecule with nanometer precision

[30]. Such experiments have considerably advanced our

knowledge about diffusion behaviour of membrane com-

ponents, and have been interpreted in terms of mem-

brane structure [28�,29�]. However, single fluorescence

molecule tracking experiments do not ‘see’ the mem-

brane, and do not reveal the molecular environment of the

molecule that is tracked. Now, HS-AFM offers new

perspectives for membrane protein diffusion analysis,

as the molecule itself, unlabelled, and its molecular

environment can be directly visualized.
Current Opinion in Chemical Biology 2011, 15:704–709 
The proof of concept and potential of HS-AFM imaging

of moving unlabelled membrane proteins has been illus-

trated on ATP-ase c-rings in the purple membrane [31�].
The purple membrane consists of large amounts of crys-

talline bacteriorhodopsin (bR), a light-driven proton-

pump that works together with the ATP-ase, using the

created proton gradient, for ATP synthesis. bR has been

studied by conventional AFM in hundreds of studies for

over fifteen years [32], but the ATP-ase remained unde-

tected throughout the years. Recently, HS-AFM was

used for studying bR and provided novel insights into

its function and dynamics such as (i) the dynamic vacancy

motion in the bR lattice [33] and at the edges [34], and (ii)

the cooperative structural change of bR in response to a

light illumination [35]. Along with the studies of bR,

ATP-ase c-rings have been visualized for the first time

in the purple membrane (Figure 3). At 187 ms frame rate

c-rings dimers have been observed in their dynamic

ensemble behaviour (Figure 3a–h), and during a di-

mer–monomer–dimer transition (Figure 3i–p). These

direct observations of interactions and transitions of

unlabelled membrane protein movement, represent

unprecedented experimental data on membrane-

mediated protein–protein interaction. The data provided

experimental basis for the ‘hydrophobic mismatch’ con-

tributing to the interaction between membrane proteins,

and allowed the description of an interaction energy

landscape that has a strength of 3.5kBT and reaches out

�5 nm into the membrane [31�].

Current limitations and perspectives
Often the question is raised if scanning so fast does not

imply more important and eventually destructive tip–
sample interactions. The answer is clearly no. Indeed,

the current HS-AFM setup controls better the applied

forces and scan-related interactions than conventional

AFMs. The fast and slow scan axes, and change of the

scanning frequency, do not influence protein movement

direction and occurrence. The maximal applied force
www.sciencedirect.com
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Figure 3
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ATP-synthase c-ring diffusion movement in native purple membrane. Movie parameters are: 187 ms/frame (5.3 frames/s), 30 nm � 30 nm scan size at

76 � 76 pixels. (a)–(h) Dimer association fluctuations. (i)–(p) Dimer–monomer–dimer transition (arrows in (l), (m), (n) depict dissociating and

associating monomers).

Figure adapted from Ref. [31�].
during tip-sample contact in oscillating mode can be esti-

mated as F = kDz, where the spring constant k is �0.1 N/m

and the cantilever bending Dz is �0.1 nm (the setpoint is

defined as 0.9 times the free amplitude A0 that is 1 nm)

giving an applied force of �10 pN. The response time (t) of

HS-AFM cantilevers, can be expressed as t = Q/pv0, where

Q is the quality factor of the cantilever and v0 is the

resonance frequency. The Q factor is typically around 2

(in liquid) and v0 is about 1 MHz, hence the response time

is less than 1 ms, less than the delay of one full oscillation

cycle. Given that the cantilever oscillates at about 1 MHz

(1 ms/oscillation cycle) and the contact is applied only

during about 10% of the cantilever oscillation, hence about

100 ns, the impulse can be estimated as �1 attoN s. How-

ever, in oscillating mode it is more appropriate to approxi-

mate the energy injected into the system that is

DE ¼ kA2
0=2 � kA2

D=2, where A0 is the free amplitude

and AD is the ‘damped’ amplitude in tip–sample

contact (AD � 0.9A0), giving �9.5 pN nm, hence

DE � 9.5 � 10�21 J = 2.3kBT. However, this energy is

applied mainly perpendicular to the observation plane

and will furthermore distribute over a relatively large (some

nm2) surface area.

What are the current limitations of the HS-AFM? At the

moment, we feel that three major obstacles must be

overcome:

(i) HS-AFM technology must still get faster for studying

more biologically relevant dynamic phenomena. At

the moment, the speed is indeed limited by the

cantilever oscillation. Given, the current cantilevers

have resonance frequencies of �1 MHz in liquid, the

tip probes the sample about a million times per

second. Hence at best, we can acquire one million data
www.sciencedirect.com 
points dp(s) per second, distributable into defined

numbers of pixels p along scan lines l at a number of

frames per second f (s) in trace and retrace,

dp(s) = plf (s)2 = 1, 000, 000. Hence, wanting to well

resolve the molecules at an image size of 200p and

200l, the maximum frame rate is readily limited to 12.5

images/s. It is therefore obvious that further devel-

opments must be performed to allow faster HS-AFM

scanning.

(ii) HS-AFM technology shall be developed for cellular
studies, thus moving forward from the molecular to

the cellular scale, which means adopting the scanner

stage for larger scan areas and/or coupling the HS-

AFM with optical microscopy. Many dynamic

phenomena can be studied on a purely molecular

level, such as enzyme activity, motor action and

diffusion, described above. Nevertheless, biologists

will want to study these features on life cells,

assuring nativeness of the system and providing an

insight to the interplay with other molecules. For

this, HS-AFM must be applied on cells. However, in

order to achieve this, technical and conceptual

obstacles must be overcome. Cells are large and less

flat than a solid support, indicating the need for large

X, Y scan ranges as well as a larger dynamic range in

Z-dimension without loss of scan speed. This is

technically difficult as larger piezo elements are

slower. A further challenge is that working on cells

implies the precise localization of the tip and scan

range on a zone of interest on a cell. This implies

coupling of the HS-AFM with optical microscopy,

which is again a difficult task, because best AFM

performance is provided when the sample is

scanned, and the tip and optical cantilever detection

system are fixed. Possible solutions imply hence
Current Opinion in Chemical Biology 2011, 15:704–709



708 Analytical Techniques
either a fast tip scanning table top HS-AFM or the

implementation of a powerful optical path into a

sample scanning HS-AFM. Doubtlessly, these

developments will take another few years, but the

gain is evident – it is to date impossible to directly

visualize a single molecule on a life cell.

(iii) HS-AFM technology shall be developed for single
molecule force spectroscopy in both dynamic and force

clamp modes. Since the first AFM measurements of

the forces required for breaking molecular bonds and

unfolding proteins, the time resolution of AFM force

spectroscopy measurements has been limited by the

resonance frequency of conventional cantilevers (few

kHz in liquid, thus, ms) [36,37]. However, the internal

relaxation time of proteins lies in the ns to ms range,

there is thus a demand for enhancing the temporal

resolution in force measurements to access this

timescale [38]. Recent works using torsional canti-

levers or photothermal actuation have allowed force

spectroscopy measurements at high loading rates,

bridging the gap between molecular dynamic simu-

lations and experiments [39,40]. The high resonance

frequency and relatively low spring constant of HS-

AFM cantilevers would enhance the time resolution

to, at least, the ms regime, few orders of magnitude

higher than with conventional AFM systems. This

resolution may allow us to detect hidden intermediate

states during protein unfolding and/or molecular

unbinding events. In addition, force clamp exper-

iments, although an elegant and valuable approach,

are still limited to a timescale of few ms [41�]. The

high bandwidth of the dynamic feedback-controller of

HS-AFM would provide, in principle, responses of

�20 ms, at least two orders of magnitude faster than

conventional force-clamp systems. Thus, the appli-

cation of HS-AFM technology to well-known systems

such as the already classic streptavidin/biotin complex

or the I27 domain of titin, may provide new insights in

the mechanism of unbinding and unfolding processes

at the relevant molecular timescales.

The recent progress in HS-AFM technology [12��,42] and

application has readily provided novel so far inaccessible

data as documented here and will doubtlessly open novel

avenues for biological studies at the molecular level in the

near future. The concomitant assessment of molecule

structure, dynamics and function under physiological

conditions is unique in structural biology at date. This

appealing combination will inspire biologists, chemists

and physicists to tackle their specific molecular questions.

Furthermore, HS-AFM data will stimulate large-scale

molecular dynamics simulations and theory.
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