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In this work we report a comprehensive experimental and computational study of the dynamical behavior of
the tapping mode atomic force microscope �AFM� probe in interaction with the force field of a sample surface.
To address the nonlinear nature of the probe dynamics, we apply describing function method. We established
that the corner frequency of the low pass describing function of the probe is sensitive to the modulation
amplitude and is generally higher than predicted by linear — force gradient — approximation. We show that
large tip apex radii and high values of surface Young’s moduli can introduce a resonant amplitude transfer,
which could lead to image distortion and system instabilities. We demonstrate that the oscillating amplitude of
the probe far from the surface and during imaging, and the ratio of these two �setpoint� have an influence on
the describing function of the probe similar to that of the quality factor. Accordingly, expert control of these
parameters is as effective as active Q control in improving the imaging bandwidth of the tapping mode AFM.
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I. INTRODUCTION

Atomic force microscopy �AFM� has evolved into a rou-
tine tool for characterizing nanostructured surfaces since the
invention of the method nearly two decades ago.1 The prin-
ciple of operation is simple and straightforward: a scanning
cantilevered tip �probe� provides a signal for mapping the
surface, sliding over the features in contact, or tapping along
the structures with a presumably sinusoidal motion in tap-
ping mode. To avoid surface damage, the probe signal —
bending or amplitude — is maintained constant via control-
ling the probe-surface distance through a feedback
mechanism. A continuous stream of theoretical and experi-
mental works on the improvement and interpretation of sub-
nanometer imaging indicates, however, that the simplicity
does not apply to the acquisition and interpretation of high
resolution AFM images �e.g., Refs. 2–9�. Tapping mode, in
particular, is prone to instabilities and inconsistencies when
imaging on the nanometer scale. On one hand, the amplitude
of the oscillating probe is a complex function of the material
properties of the sample, the cantilevered tip and the envi-
ronment; even in equilibrium state, this complexity results in
systematic errors — imaging artifacts — inherent to the
process.2,3,5–9 In nonequilibrium state, like the AFM in op-
eration, this complexity can cause nonlinear and even chaotic
behavior.10–12 On the other hand, the narrow imaging band-
width of the tapping mode operation poses the dilemma of
sacrificing the surface tracking �contrast� and the reproduc-
ibility of the images for higher frame capture rates or vice
versa.11–13 The nonlinearities of the interaction might also
interfere with the dynamical behavior of the probe; it is thus
feasible to study the imaging bandwidth in consideration of
realistic working conditions.

The imaging bandwidth is a product of the transfer func-
tions of all components placed in the feedback loop. For the
�nonoscillating� probe it falls into the range of several hun-

dred kHz which would provide reliable surface tracking for
practically all imaging conditions.10 The bandwidth of the
piezo actuator and the feedback loop �“hardware”�, however,
is of the order of several kHz.10 Recent works have shown
that significant improvement can be achieved by applying
faster piezoceramics,14 integrating the piezo actuator onto the
cantilever,15–17 improving the data acquisition speed and also
by introducing advanced control algorithms.18,19 Altogether,
these solutions lead to an almost two orders of magnitude
improvement in imaging bandwidth. In contrast, due to in-
herent mechanical properties of the probe, in particular, the
slew rate when following a surface modulation and transients
generated by step function perturbations, the bandwidth of
the tapping mode probe is restricted to a few kHz.12,13

Analytical modeling of the tapping mode often relies on
the force gradient approximation, assuming that the tip-
sample interaction force is linear and thus it can be consid-
ered as a modified cantilever spring constant. Using the force
gradient approximation, Mertz, Marti, and Mlynek13 derived
that the tapping mode probe is a linear system with a simple
transfer function. It has a low pass transfer character with a
−3 dB bandwidth ��� in the form of

� =
�0

2Q
�1�

provided that the probe is driven at its resonance frequency.
In Eq. �1�, �0 and Q denote the undamped angular resonance
frequency and quality factor of the probe, respectively. The
latter one stands for the damping of the cantilever by the
environment. The force gradient approximation, however,
fails to account for the nonlinearity of the probe-surface in-
teraction, accordingly, it cannot describe tapping mode op-
eration realistically. A partial solution was presented by
Nony et al.: assuming a pure sinusoidal motion of the tip, the
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time evolution of amplitude and phase signals can be mod-
eled in the form of coupled differential equations.20,21 This
model is applicable to nonlinear interactions, but still ex-
cludes dissipative processes like adhesion and viscosity. The
literature does not reveal any theoretical works on the analy-
sis of the tapping mode probe bandwidth performed under
truly realistic pretenses.

Experimental works on the control of the tapping mode
bandwidth were based on Eq. �1�. Two main solutions exist:
�1� increasing the probe resonance frequency using short
cantilevers22–25 and �2� artificially lowering the effective
quality factor of the probe �Q control�.13,26 These solutions,
however, introduce additional trade-offs: method �1� requires
special optical detection system due to the reduced length of
the cantilever23 thus it cannot be easily adapted to commer-
cial systems, while method �2� is reported to increase the
interaction force remarkably.12,27 None of the two methods
provided significantly better imaging results than that can be
achieved by expert control of the system parameters,28 a phe-
nomenon that has not been addressed with scientific scrutiny
yet.

The aim of our present work is to perform a comprehen-
sive theoretical and experimental investigation of the dy-
namical properties of the tapping mode probe. For computer
simulation we use a realistic model where we do not apply
any restrictions on the tip motion or the tip-sample interac-
tion. Due to the nonlinear nature of the tapping mode probe,
a transfer function, commonly used for the characterization
of linear systems, cannot be measured, thus we use the de-
scribing function method. We show that surface and probe
properties can introduce nonlinearities in the amplitude
transfer function; that the amplitude of the oscillating probe
far from the surface and during operation, and the ratio of the
two �setpoint�, have a strong influence on the bandwidth,
comparable to that of the Q control; and that the theoretical
results can be confirmed on a simple commercial AFM sys-
tem.

II. METHODS

To clarify the terminology that we use in this work, we
should distinguish between the stationary �equilibrial� and
transient motion of the damped harmonic oscillator, the cho-
sen model of the cantilevered tip system. Previous works
frequently discussed “dynamical properties” of the system
based on the assumption that it is always in its equilibrial
state2,29,30 having constant amplitude. However, when talking
about imaging conditions, this oscillator suffers continuous
perturbations from the varying surface topography, a situa-
tion which can be described by the nonstationary, i.e., tran-
sient solution of the force law. Our work is concerned with
the latter situation, accordingly, we use the term “dynamic”
to imply to the continuous perturbations by the surface to-
pography, and, intrinsicly, the nonstationary nature of the
oscillation.

The describing function �DF� method is commonly used
to characterize nonlinear systems.31 Here, a sinusoidal modu-
lation is applied to the input of the system, and the amplitude
and phase transfer corresponding to the applied frequency is

determined from the output using Fourier analysis. In case
the system is linear, the DF becomes identical to the transfer
function. Unlike the transfer function, however, DF may also
depend on the modulation amplitude due to the nonlinearity
of the system studied. In this work, we both measure and
calculate the DF of the AFM probe.

Block diagram of the experimental arrangement used for
DF measurements is shown in Fig. 1. Experiments were con-
ducted on a highly oriented pyrolytic graphite sample using
Topometrix Explorer and PSIA XE-100 atomic force micro-
scopes. To achieve fast amplitude and phase detection,
WITec AC unit, an external high speed digital lock-in ampli-
fier, was used to establish the tapping mode operation instead
of the built-in tapping mode controller.32 The refreshing rate
of amplitude and phase measurements was 300 kHz. To mea-
sure the DF, the probe-sample distance was modulated by a
low frequency sinusoidal signal applied to the vertical �Z�
piezo actuator of the AFM scanner, and DF was determined
from the amplitude signal output of the WITec AC unit using
a separate computer controlled dual phase lock-in amplifier
�Stanford Research SR 830�. Measurements involved the fol-
lowing steps: �1� the probe was engaged to the surface; �2�
the feedback loop gain was minimized to avoid artifacts
caused by the AFM controller at measured frequencies; �3�
probe-sample distance modulation was introduced and the
amplitude response of the AFM was recorded through the
lock-in amplifier.

The numerical calculations were based on the point of
mass model of the cantilevered tip with a k spring constant.4

The positions of the tip apex and the piezo drive �the
clamped end of the cantilever� are d�t� and z�t�, respectively;
hence, the deflection of the cantilever is equal to d�t�−z�t�.
Accordingly, the equation of motion of the tip takes the form

d̈�t� = �0
2�z�t� − d�t�� +

�0

Q
�ż�t� − ḋ�t�� −

�0
2

k
F�d�t�, ḋ�t�� ,

�2�

where the F�d�t� , ḋ�t�� term represents the tip-surface
interactions while �0 and Q are the same as in Eq. �1�. We

FIG. 1. Block diagram of the experimental arrangement for de-
termining the describing function.
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chose the Dugdale theory33 based Maugis continuum
mechanics34,35 �FM�d�� to describe the contact part of the
tip-sample interaction. The benefit of this approach is that it
includes not only the nonlinear deformation forces, but also
the contact adhesion and adhesion hysteresis. Surface damp-

ing ��ḋ� was also included to account for viscoelasticity.36 In
the noncontact region attractive van der Waals forces
�FvdW�d�� were assumed,37 and the matching of the contact
and noncontact force curves was established in the same way
as in Burnham et al.4 Consistently, the tip-sample interaction
force takes the form

F�d, ḋ� = �FM�d� + �ḋ , contact

FvdW�d� , noncontact.
� �3�

To simulate the tapping mode, modeling the drive and the
amplitude detection process is also required. The first one is
implemented through z�t�

z�t� = Z0 + s�t� + a0 sin��t� , �4�

where Z0 represents the time averaged position of the Z piezo
drive which was used to establish the desired setpoint ampli-
tude, and Z0 was constant during the simulation, that is, the
surface tracking was disabled. Tapping mode excitation was
introduced through a0 and �, drive amplitude and angular
drive frequency, respectively. The low frequency modulation
of the Z piezo drive is modeled by s�t�. The probe signal was
generated by solving the equation of motion numerically us-
ing the fourth order Runge–Kutta method. Evidently, the so-
lution describes only the trajectory traced by the tip; the
actual oscillating amplitude of the probe was then deter-
mined from the last n periods of the deflection signal using
Fourier method, similar to the way the tapping mode control-
ler works.32 The complex amplitude can be calculated using
the formula

A�t� =
�

n�
�

0

2n�/�

�d�t − �� − z�t − ���ei��t−��d� . �5�

The absolute value and the argument of A�t� yield the
amplitude and the phase signals, respectively. To calculate
the DF of the system, the probe-sample distance was modu-
lated sinusoidally through s�t�=S0 sin�2�ft�, where f is the
modulation frequency of the describing function measure-
ment, and S0 is the modulation amplitude. Similar to Eq. �5�,
the describing function �S�f�� was calculated from the am-
plitude signal ��A�t��� using

S�f� =
2f

n
�

0

n/f

�A�t − ���ei2�f�t−��d� . �6�

III. RESULTS AND DISCUSSION

A. Calculations

DF calculation was performed for ambient tapping mode
setup, heretofore referred to as the “basic setup.” The follow-
ing parameters were used: 40 N/m cantilever spring con-
stant, 400 kHz resonance frequency, 10 nm tip radius, 500 as

the value of the quality factor, 75 mJ/m2 adhesion energy,
17 GPa sample Young’s modulus and 2�10−5 Ns/s surface
damping. The cantilever was driven at resonance, and the
free and setpoint amplitudes were 50 and 35 nm, respec-
tively. Calculated DF for this setting is shown in Fig. 2. The
DF shows a low pass character with nearly constant ampli-
tude transfer at the low frequency region. The associated
phase shift increases with the frequency monotonously, how-
ever, the slope below the corner frequency is smaller than
above it. For accurate, distortion free imaging, the perturba-
tion of the probe should not exceed the corner frequency,
3113 Hz.

For comparison, the −3 dB bandwidth predicted by the
force gradient approximation �Eq. �1�� is only 2513 Hz. The
calculations also revealed that the corner frequency de-
creases with increasing modulation amplitude, as expected
for a nonlinear system, but the shape of the describing func-
tion does not seem to be affected. Consistently, we used
2 nm modulation amplitude �S0� in the further calculations to
maintain comparability.

During the following calculations we investigated the
�separate� effects of material and system parameters: the
sample adhesion �surface energy�, Young’s modulus, surface
damping and tip radius as well as the quality factor, free and
setpoint amplitude of the probe, respectively, on the describ-
ing function. Only one parameter was changed in each series
of calculations.

The variation of the sample surface energy between 25
and 125 mJ/m2 caused no significant change but a negligible
widening towards higher adhesion in the DF �Fig. 3�. This is
a somewhat surprising result, knowing that high adhesion is
responsible for most height measurement artifacts on the na-
nometer scale.8,9

FIG. 2. Calculated describing function of the tapping mode
AFM probe in air �basic setup�. The following parameters were
used: k=40 N/m, �=�0=2��4�105 1

s , S0=2 nm, Q=500, 10 nm
tip radius, 75 mJ/m2 adhesion energy, 17 GPa sample Young’s
modulus and 2�10−5 Ns/m surface damping. The free and setpoint
amplitudes were 50 and 35 nm, respectively.
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The effect of the Young’s modulus of the surface was
much more significant: in case of stiff samples �Young’s
moduli above 100 GPa�, not only the bandwidth changes, but
also the low frequency amplitude transfer: small peaks indi-
cate the resonant behavior �Fig. 4�. The appearance of the
peaks is also accompanied by a decrease in the corner fre-
quency.

To include dissipating mechanisms in our study, we
investigated the effect of surface damping �Fig. 5�. In

this case, surface damping gradually decreased from
2�10−5 Ns/m to 5�10−6 Ns/m. Surprisingly, the condi-
tions favor peaked DFs and lower corner frequency at lower
surface damping values �5�10−6 Ns/m�.

Although not explicitly a property of the sample, the tip
apex radius strongly influences the force interaction, consis-
tently, we performed calculations in search of a tip effect.

FIG. 3. Effect of adhesion �surface energy of the sample� on the
describing function. All other parameters were the same as in the
basic setup.

FIG. 4. The effect of the Young’s modulus of the surface on the
describing function. All other parameters were the same as in the
basic setup. Imaging on stiff surfaces reduces the probe bandwidth
significantly.

FIG. 5. Effect of surface damping. All other parameters were the
same as in the basic setup. At low values �5�10−6 Ns/m� a peak
can be observed in the amplitude transfer.

FIG. 6. Effect of tip radius on the describing function. Towards
large radii �100–200 nm� a peak develops in the amplitude transfer.
This peak is associated with a sudden phase shift. Importantly, both
the peak in the amplitude transfer and the phase shift can undermine
the stability of the feedback system and could lead to imaging arti-
facts. All other parameters were the same as in the basic setup.
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Variation of tip radius �Fig. 6� caused remarkable changes in
the DF, with large peaks and an abrupt drop in the bandwidth
for 100–200 nm �rather blunt� tip apexes. In addition, these
changes are accompanied by a sudden phase shift.

We compared the tip-sample interaction force in those
cases where peaks appeared to that of the basic setup. It can
be seen �Fig. 7� that both large tip radii and high values of
Young’s moduli result in a steep rise in the maximal exerted
force. Hence, indentation depth and tip-sample contact time
become significantly shorter, practically, the tip rebound
from the surface. This would then lead to “amplification” in
the amplitude transfer and, consistently, to the appearance of
peaks in the describing function. Naturally, this phenomenon
can cause system instabilities. According to the Bode stabil-
ity criteria of the feedback loop, the phase margin of the
system must be positive at the frequency where the open
loop gain of the system drops below unity. The enhanced
amplitude transfer at the peaks increases the open loop gain
while the phase shift decreases the phase margin. Conse-
quently, a blunt tip does not only limit the lateral resolution,
but may also be responsible for system instabilities and im-
age distortion.

As we have demonstrated above, dissipating processes,
e.g., adhesion and damping, increase the constant amplitude
transfer region and consequently the bandwidth of the probe.
This result has a special importance for bioimaging where,
typically, working in liquid environment provides better
quality high resolution images.38–40 This was implicitly at-
tributed to the better surface tracking due to the reduced
quality factor.23 Our calculations indicate that besides the
reduced quality factor, increased attractive forces �e.g., hi-
drophobicity� and surface damping may also lead to higher
stability due to the wider linear amplitude transfer in the
damping medium.

Turning our attention to the probe properties, first we in-
vestigated the effect of the quality factor. Lowering Q from

500 to 400, 300 and finally 100 �Fig. 8� resulted in a gradu-
ally increasing bandwidth, in accordance with the predictions
of the force gradient approximation �Eq. �1��.

Influence of the free amplitude has been investigated
while the setpoint is set to 70% of the actual free amplitude
�Fig. 9� and also when the setpoint amplitude was fixed to
35 nm �Fig. 10�. Surprisingly, we found that the DF is very

FIG. 7. Tip-sample force as a function of the penetration depth.
Calculated for the basic setup �continuous line�, for 75 GPa Young’s
modulus �dashed line�, and for 200 nm tip radius �dotted line�. The
slope of the curve is remarkably higher for high Young’s modulus
or large tip radius. The increased slope may be responsible for the
appearance of peaks in the amplitude transfer function. FIG. 8. Effect of the quality factor �Q� on the DF. In accordance

with the classical theory, lowering the quality factor increases the
corner frequency and thus the probe bandwidth.

FIG. 9. Effect of the free oscillating amplitude of the probe on
the describing function at constant setpoint free amplitude ratio.
The setpoint amplitude was 70% of the actual free amplitude. All
the other parameters were set to basic setup values. These graphs
show that a slight increase of the free amplitude widens the probe
bandwidth remarkably.
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sensitive even to slight changes of the free amplitude. For
comparison, the force gradient approximation would not pre-
dict any such sensitivity.13 Comparing Figs. 9 and 10 with
Fig. 8, it is apparent that increasing the free amplitude wid-
ens the probe bandwidth comparably to lowering Q from 500
to 100. Consistently, the free amplitude appears to be just as
an effective tuning parameter of the tapping mode probe
bandwidth as the quality factor.

Based on above results it is a straightforward assumption
that the setpoint amplitude may also have an influence on
the DF. Indeed, lowering the setpoint amplitude from
45 to 15 nm �at 50 nm free amplitude� resulted in a five
times higher corner frequency �Fig. 11�. Hence, in addition
to the quality factor and the free amplitude, the setpoint am-
plitude can also be used for tuning the imaging bandwidth.

B. Experiments

To test the predictions of the numerical results, we per-
formed experiments with two AFM systems using the setup
shown on Fig. 1. In a commercial AFM, recording the DF at
high frequencies is problematic due to built-in low pass fil-
ters and hardware bandwidth limits. One way to overcome
this limitation is using low resonance “soft tapping” probes.
Describing functions were recorded with a Topometrix Ex-
plorer AFM operating on graphite surface at 25, 50 and
67 nm free amplitudes �Fig. 12�. The setpoint amplitude was
20 nm for all cases. It can be seen that, in a good agreement
with the calculations �Fig. 10�, increasing the free amplitude
leads to wider probe bandwidth.

An alternative way to demonstrate the dynamic effects is
the application of high modulation amplitudes, a situation

when the corner frequency is conveniently lower. We used
PSIA XE-100 atomic force microscope with standard tapping
cantilever. The probe-surface modulation was 18.3 nm.
These conditions are as close as we could get to the param-
eters of the calculations on a commercial AFM system. Re-

FIG. 10. Effect of the free oscillating amplitude of the probe on
the describing function at constant setpoint amplitude. The setpoint
amplitude was constant �35 nm� and the free amplitude was varied
between 40 and 100 nm. All the other parameters were set to basic
setup values.

FIG. 11. Effect of the setpoint amplitude on the describing func-
tion. During these calculations the free amplitude was 50 nm and all
other parameters corresponded to basic setup values. It can be seen
that lower setpoint values can increase the bandwidth of the probe.

FIG. 12. Experimental DF curves taken on graphite surface with
varied free amplitudes: 25 nm ���, 50 nm ���, 67 nm ���. All
other parameters were maintained constant. Cantilever resonance
frequency, quality factor and nominal spring constant were
60 172 Hz, 120 and 1.0 N/m, respectively. The setpoint amplitude
was 20 nm. The solid lines are guides for eyes.
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sults are depicted in Fig. 13. During these experiments only
the setpoint and free amplitudes were changed, any other
parameters were constant and the topography feedback loop
was inactive. Setpoint amplitude was monotonously in-
creased in Figs. 13�e�–13�g� while the free amplitude was
decreased in Figs. 13�a�–13�c�. Alteration of both parameters
leads to remarkably smaller observable modulation depth in
the cantilever deflection signal which is in accordance with
the calculations �Figs. 10 and 11�. Small glitches can be seen
at negative deflection values �Fig. 13, �� which can be ex-
plained as follows. At high frequency, the probe amplitude
cannot increase at the rate of the probe surface separation,
thus the probe loses contact with the surface. A half period
later, the probe approaches the surface and the intermittent
contact reinstated. The glitches observable in the figure show

the points of these transitions. Control experiments �Figs.
13�d�–13�h�� performed at one order of magnitude lower
modulation frequency do not show any glitches or reduced
transference, clearly indicating that the observed phenomena
originate from a dynamic effect. Note, in the experiments the
quality factor and drive frequency were constant and under
these conditions the force gradient approximation does not
predict any change in the probe bandwidth, that is, based on
previously published theories no change of the transference
is predicted.

IV. CONCLUSION

We performed a comprehensive experimental and compu-
tational study of the imaging bandwidth of the tapping mode
AFM using describing function method. We have shown
that, for a wide range of parameters, the low frequency am-
plitude transfer is linear and the corner frequency is higher
than predicted by linear models. Consistently, the dynamical
range of distortion-free imaging is larger than expected. We
established that dissipating processes like adhesion, surface
and environmental damping increase the probe bandwidth.
We also found that steep gradients of the interaction force, as
in the case of using blunt tips or imaging stiff surfaces, cause
peaking in the describing function and decrease the band-
width. Consistently, experimentally observed system insta-
bilities and image distortion during high resolution imaging
with tips of large radii, usually attributed to tip convolution,
can be also caused by nonlinear probe behavior. We demon-
strated that the free and setpoint amplitudes of the probe
during tapping operation are sensitive controls of probe
bandwidth; thus, careful selection of the working parameters
can be as effective as active probe quality control �“Q con-
trol”� in improving image quality. These results provide a
theoretical background for the empirical observations of a
generation of AFM operators.
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