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Simple feedforward ideas are shown to lead to a nearly tenfold increase in the effective bandwidth
of a closed-loop piezoelectric positioning stage used in scanning probe microscopy. If the desired
control signal is known in advance, the feedforward filter can be acausal: the information about the
future can be used to make the output of the stage have almost no phase lag with respect to the input.
This keeps in register the images assembled from right and left scans. We discuss the design
constraints imposed by the need for the feedforward filter to work robustly under a variety of
circumstances. Because the feedforward needs only to modify the input signal, it can be added to
any piezoelectric stage, whether closed or open loop. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2403839�

I. INTRODUCTION

The problem of positioning objects rapidly and accu-
rately is one that experimentalists encounter frequently and
is required by many nanoscience technologies. For example,
scanning probe microscopes �SPM� build up an image by
rastering the tip �or sample� through a two-dimensional scan,
while tracking sample topography in the third dimension, as
well.1,2 In nanolithography, an active tip must be controlled
to follow some designed path.3 In single-molecule biophys-
ics, probes often must be positioned to nanometer accuracy.4

For displacements at the nanoscale, the typical techno-
logical solution uses piezoelectric actuators. Because piezo-
electric materials have a nonlinear, hysteretic response, they
are often used in closed-loop control systems, where a sensor
records the actual displacement and feeds back an error sig-
nal to an analog or digital controller that attempts to track a
given setpoint. The resulting closed-loop system has a nearly
linear response at low frequencies, meaning that slow control
signals can be accurately tracked. In addition, the kind of
stage to be discussed here guides the motion using a flexure
system that greatly reduces unwanted motions. One limita-
tion of such stages, however, is that at higher frequencies, the
feedback is deliberately reduced and the beneficial effects of
feedback linearization are lost. The feedback control systems
is limited in bandwidth for two reasons:5 First, the inevitable
mechanical resonances of the displacement stage will add
phase shifts, which tend to destabilize feedback loops. While
it is in principle possible to compensate for such resonances,
the more straightforward solution is simply to limit the band-
width of the controller to frequencies well below that of the
first significant resonance. Second, as the feedback band-
width increases, the noise in the displacement sensor, which
feeds through to the physical displacement, will be more and
more significant. These two limitations mean that practical
closed-loop translation stages tend to have closed-loop band-

widths that are 1/10 to 1/20 the frequency of the first reso-
nance. Because the usual tracking waveforms have
harmonics—SPMs commonly use triangle waves so that the
scans are at constant velocity—most currently available
closed-loop stages can track movements at frequencies that
are at most 1/20 to 1/40 of the first resonant frequency. The
lowest resonant frequency depends on the purpose of the
stage �load, displacement range, etc.� but typically ranges
from 100 Hz to 10 kHz. Such low frequencies are one ob-
stacle in developing higher-speed SPMs.

The purpose of this article is to show that a simple
implementation of a technique known as feedforward control
can significantly increase the usable bandwidth of piezoelec-
tric displacement stages. While feedforward has been applied
by the groups of Devasia and of Stemmer to piezoelectric
tube scanners not under closed-loop control,6–11 the design
presented here is particularly simple and robust and does not
rely on advanced concepts such as H�-metric design.9 Be-
cause the stage considered here is already under closed-loop
control, we can obtain good performance using simple meth-
ods. Another design that combines feedforward with feed-
back presented in this journal12 focused on improving accu-
racy at low bandwidth, while we focus here on speeding up
the stage response.

The basic idea of all the feedforward strategies is to use
the known closed-loop response of the stage to design a pre-
filter for the desired input stage. Loosely, to the extent that
the distortion of a desired control signal is known in ad-
vance, one can design a waveform with compensating distor-
tions so that the stage’s response “undoes” the distortions,
leaving an approximation to the desired waveform. Because
all that is done is a prefiltering of the desired input, one may
add such a feedforward control to any existing displacement
stage, whether open or closed loop. Other advantages of the
technique will be given below.

Feedforward is a standard technique in control theory5,13

where one uses the known dynamical response of the system
to design an input that will lead to a desired output. Classica�Electronic mail: johnb@sfu.ca
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applications focus on avoiding the excitation of softly
damped vibration modes. They include the related problems
of using a crane to displace a heavy load without making it
swing14 and that of moving an open container of fluid with-
out making it slosh.15 Feedback, by contrast, uses trajectory
information about the measured deviations of the output
from the desired output. While the potential advantages of
feedforward are well-understood by engineers,16 they have
been less appreciated in the physics community. In addition
to the work by the groups of Devasia and Stemmer cited
above, a commercial manufacturer has recently begun offer-
ing feedforward as an option for its own piezoelectric
stages.17 Although the commercial feedforward control has
some features in common with the one proposed here, the
details are somewhat different.18 More generally, we shall
see that feedforward—like all engineering design—involves
a number of tradeoffs �e.g., accuracy versus speed, optimiza-
tion for a particular scan waveform, etc.�. The advantage of
designing one’s own system is that one can weight the nec-
essary tradeoffs in a way that best reflects one’s own goals.

II. FEEDFORWARD CONTROL

As closed-loop positioning stages have a nearly linear
response, subject to range and slew-rate limitations, a linear
analysis will suffice, although extensions to nonlinear sys-
tems are also possible. Figure 1�a� illustrates the signal flow
in a single-input, single-output �SISO� control system. In our
case, the input will be the desired position of the stage, r�t�,
and the output y�t� will be the stage’s actual position. Using
Laplace transforms and working in the frequency domain,
we denote the physical system’s Laplace transform as G�s�,
and the controller’s as K�s�. The signal d�s� represents me-
chanical and electrical disturbances �assumed, for simplicity
to affect the output directly�, while ��s� represents sensor
noise. In addition, the actuator signal u�s� is the output from
the controller that is sent to the input of the physical system.
For the translation stages discussed here, the physical system
G�s� includes a high-voltage amplifier, piezoelectric ceramic
actuators, a mechanical flexure guide that constrains motion
to one dimension, and any load placed on the stage.

Solving the signal flow in Fig. 1 gives

y�s� =
K�s�G�s�

1 + K�s�G�s�
�r�s� − ��s�� +

1

1 + K�s�G�s�
d�s�

� T�s��r�s� − ��s�� + �1 − T�s��d�s� . �1�

In Eq. �1�, T�KG / �1+KG� is the closed-loop response
function, also known as the “complementary sensitivity
function.”5 In general, one chooses the feedback gain K to be
large ��1/G�, implying that T�1. As Eq. �1� then shows,
T→1 suppresses the effect of disturbances d, while the out-
put y will tend to track the input r. Unfortunately, two prob-
lems limit this solution. First, if the denominator
1+K�s�G�s� ever vanishes, there will be an infinite response
to a finite input, i.e., an instability. This will occur when �KG�
has unit gain and a 180° phase shift. Since physical systems
will develop large phase shifts at high frequencies, the gain
of K must be reduced at those frequencies so that �KG��1.
This implies a feedback bandwidth, �b, defined to be the
lowest frequency where �T�=1/�2. In addition, even if sta-
bility is not an issue, Eq. �1� shows when T=1, y=r−�. In
other words, the noise � feeds through to the actual output.
Because this noise is injected by the feedback loop itself, it
represents a deterioration of performance. The usual solution
to this dilemma is again to limit the feedback bandwidth,
with the idea that disturbances are typically low frequency
while sensor noise extends to very high frequencies. More
sophisticated approaches �Kalman and Wiener filtering� cal-
culate the optimal feedback bandwidth in the presence of
sensor �and actuator� noise with known statistical
properties.19

Both of the limitations discussed above imply that the
closed-loop response function T�s� will resemble that of a
low-pass filter with bandwidth �b �with perhaps some com-
plicated dynamics in its roll-off�. As mentioned in the Intro-
duction, in SPM applications the desired control signal is
often a triangle waveform �representing constant-velocity
scans to the right and left�. The corner of the triangle implies
high-frequency components, resulting in significant distor-
tions that occur at control frequencies well below �b.

The feedforward approach to increasing the effective
bandwidth of the closed-loop system modifies the loop-
structure of Fig. 1�a� by adding a prefilter. Figure 1�b� shows
this arrangement: the prefilter F�s� changes r�s� to r��s�,
which is then sent to the closed-loop system T, with the goal
that T�s�r��s� is close to the desired signal r�s�. One advan-
tage of this configuration, known as a “two degree of free-
dom” controller �see Ref. 13, Chap. 10�, is that one can
choose the controller K�s� to limit disturbances and noise
feedthrough while at the same time choosing F�s� to track
r�s�. Ordinary “one degree of freedom” controllers that lack
F must set the frequency-dependent gains in K in a way that
compromises between sensor noise feedthrough and track-
ing. Note that, while our discussion assumes closed-loop
control of the physical system G, it clearly applies, too, if
there is no closed-loop control of the physical system, in
which case T=G.

There are many strategies for choosing the feedforward
controller F�s�. The group of Seering and collaborators �used

FIG. 1. �a� Block diagram of a typical feedback control system showing the
control input r, direct-acting disturbances d, and sensor noise �. The physi-
cal system is represented by G and the control algorithm by K. �b� Feedfor-
ward prefilter F modifies the input signal from r to r�, which is then sub-
stituted for the control signal r in the closed-loop system in �a�. The closed-
loop system of �a� is represented in �b� by the block T.
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in the commercial design of Ref. 16� advocates a particular
strategy where F�s� is a finite-impulse-response �FIR� filter
that can be expressed in discrete-time form as

rn� = a0rn + a1rn−1 + a2rn−2 + ¯ . �2�

In Eq. �9�, rn� is the output at time n �in units of a sampling
time Ts�, rn is the input, and the set of a’s are filter coeffi-
cients whose value must be determined. One also commonly
imposes constraints on the coefficients so that the range of
the output signal r��t� never exceeds that of the input r�t�
�considered over the whole waveform�. In our case, we shall
use an “infinite impulse response” �IIR� filter and somewhat
different constraints, which are more suited for typical SPM
applications. �See Sec. III C, below.�

We begin by noting that the obvious naive strategy is to
choose F to be the inverse of T: F�s�=T−1�s�. The combined
response function is then unity and it would seem that y will
track r perfectly. There are two difficulties �see Ref. 13,
Chap. 15�. First, the strategy is not robust: If the physical
system G were known perfectly and were unchanging, its
inverse would be well-defined. However, this is rarely the
case. In the application discussed below, for example, the
various models of the stage dynamics are accurate at low
frequencies but become inaccurate at higher frequencies. The
second difficulty is that the feedforward signal implied by
F�s� may be physically unachievable, as physical inputs are
limited in both amplitude and frequency �for example, by the
sampling time of the discrete output�. These limitations make
it impossible to reproduce the dynamics of T beyond some
cutoff frequency.

III. APPLICATION TO A PIEZOELECTRIC STAGE

In this section, we show how the general ideas about
feedforward discussed above apply to the specific case of a
piezoelectric stage.

A. Characterization of stage dynamics

We used a commercially available closed-loop, two-axis
translation stage20 that is part of a home-built atomic force
microscope �AFM�. The stage is controlled by an analog
proportional-integral feedback loop. Figure 2 shows the
closed-loop transfer function T�s� for the X-stage,21 mea-
sured directly using a lock-in amplifier.22 The light and
heavy solid curves show, respectively, the response of the
unloaded stage and that of a 113 g. load �our sample sup-
port�. Notice that the first resonance is lowered �from 525 to
442 Hz�, but the low-pass filter, the second resonant peak,
and the zero are all essentially unchanged. We can identify
the features of the transfer function physically, as follows:
The two-pole low-pass filter at 42 Hz is imposed by the
analog feedback electronics of the stage’s controller. The
525/442-Hz peak is the mechanical resonance of the moving
stage itself. The alternation of peaks and zeros �660, 950
Hz, ...� are typical of mechanical systems where energy is
input and measurements are made locally.23 The resonances
represent different mechanical modes of the system, while
the antiresonance frequencies depend on the placement of
actuator and sensor. �Essentially, zero response is measured

when the sensor happens to be at a node of the excited sys-
tem.� In any case, because of the low-pass filter imposed by
the stage’s controller, the amplitudes of these dynamics will
be small ��10−3 of the driving amplitude�.

We also show in Fig. 2 a series of fits to the loaded
transfer function that represents models that capture the be-
havior to higher frequencies. The simplest is a fit to a two-
pole, low-pass filter of the form

T2�s� =
1

	1 +
s

�0

2 , �3�

with �0 / �2��=42 Hz, corresponding to a bandwidth of
42��2−1�27 Hz.24 We refer to this as the “two-pole”
model. In order to explore the benefits of including higher-
frequency dynamics, we also fit a “four-pole” model by mul-
tiplying Eq. �3� by a second-order denominator, correspond-
ing to the main mechanical resonance at �1 / �2��=442 Hz.
Explicitly,

T4�s� = T2�s�� 1

1 + 2�1	 s

�1

 + 	 s

�1

2� . �4�

Similarly, the six-pole model T6�s� multiplies an addi-
tional second-order denominator of frequency �2 and damp-
ing factor �2. Associated with the two-, four-, and six-pole
models are asymptotic phase shifts of 180°, 360°, and 540°,
respectively.

B. Continuous-time feedforward filter

We explored a series of different feedforward filters
F2�s�, F4�s�, and F6�s�, based on the different models of the

FIG. 2. Measured frequency response �solid lines� of loaded and unloaded
translation stage, overlaid with fits �dashed lines� to the loaded response by
three different models �two, four, and six poles�. �a� Magnitude response of
the Bode plot. �b� Phase response.
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system dynamics discussed in the previous section. They
have the form Fj�s�=Tj

−1�s�Lj�s� for j= 2,4 ,6�. Here, L2, L4,
and L6�s� are low-pass filters of orders 2, 4, 6 that set the
bandwidth of the dynamics of the combined prefilter and
physical system. We set it to about 250 Hz. This is greater
than 50% of the first resonant frequency and is 9.3 times
greater than the bandwidth of the normal stage �27 Hz�. In
principle, L�s� could have the same form as T2�s�, but a
two-pole Butterworth filter �which has the flattest amplitude
response� performed slightly better.25 Thus,

F2�s� =
	1 +

s

�0

2

1 + �2
s

�lp
+ 	 s

�lp

2 . �5�

The combination F2�s�T2�s� in effect moves the two
poles of the closed-loop system from �0 on the real axis to
±45° on the circle of radius �lp, as shown in Fig. 3. Feed-
forward can thus “cancel out” physical poles by placing ze-
ros on top of them in the complex s-plane. At the same time,
one adds other poles farther to the left �more stable�.

The feedforward filters corresponding to the fourth- and
sixth-order models are constructed in a similar way. For each
pair of poles corresponding to a resonance, one puts a corre-
sponding zero in the prefilter. Adding a zero over a resonance
pole ensures that no component of the control signal r�t� will
be able to excite the mechanical resonance. One then com-
pensates by increasing the order of the Butterworth cutoff
filter by 2. Thus, the fourth-order model uses a fourth-order
Butterworth filter, etc.

C. Discrete-time approximation to the feedforward
filter

The next step in the frequency design is to approximate
the continuous filter F�z� by a discrete equivalent . This is
done by substituting5

z = eTss �
1 + sTs/2

1 − sTs/2
�6�

or, equivalently,

s =
2

Ts

1 − z−1

1 + z−1 , �7�

which is known as the bilinear �Tustin� transform.26 Because
our sampling rate Ts

−1=10 kHz is much faster than the high-
est frequencies in the prefilter �250 Hz�, the discretization
algorithm is not crucial.27 For the stage we have been dis-
cussing, we find

F2�z� =
a0 + a1z + a2z2

b0 + b1z + z2 , �8�

with a0=26.5, a1=−54.6, a2=28.1, b0=0.801, and b1
=−1.78. To calculate these coefficients, it is helpful to use
a computer-algebra program or equivalent to carry out the
substitution of Eq. �7� into Eq. �5�. We used the open-
source program SCILAB, which has many signal-processing
and control algorithms.28 Finally, by noting that z−1 has the
interpretation “delay by Ts,” we can divide by z2 in Eq. �8�
and convert our discrete filter into an “infinite impulse re-
sponse” �IIR� digital filter of the form

rn� = a2rn + a1rn−1 + a0rn−2 − b1rn−1� − b0rn−2� , �9�

where rn� is the modified input at time nTs, rn is the desired
output signal, and the a and b coefficients are taken from Eq.
�8�. Equation �9� is used to calculate the signal fed to the
stage’s input.

D. Acausal filtering

Feedforward, at least implicitly, makes use of prior
knowledge about the system under control. In our case, the
prefilter contains a partial inverse of the system’s dynamics,
which was explicitly measured beforehand. If we also know
the desired future behavior of the control signal r�t�, we can
use this knowledge to design a filter whose output has no
phase lag with respect to the input—an “acausal filter.”29

A simple technique for designing acausal filters that is
well-known to engineers25 is illustrated in Fig. 4. One starts
at the upper right of the figure, with the time-reversed ver-
sion of the desired output signal. One passes this signal
through a model of the physical closed-loop system
�with transfer function T2� and then through the prefilter F2.
�Because F2 inverts the modeled dynamics of the physical
system G, the product F2T2 is just the low-pass filter L2�s�
with cutoff �lp in Eq. �5�.� The output is illustrated at the
upper left of the figure and is a low-pass-filtered, phase-

FIG. 3. Pole-zero plot of the system F2�s�T2�s�, showing how the prefilter
“cancels out” poles of the system with zeros and then adds new poles at
higher frequencies. The crosses indicate poles; the circles, zeros.

FIG. 4. Signal flow in the design of an acausal feedforward filter, using the
second-order model. The light-shaded boxes represent dynamics that are
coded on computer. The dark-shaded box represents the physical system,
including its analog closed-loop control.
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lagged version of the original signal �dotted line�. One then
time-reverses this output, as illustrated by the signal in the
lower left. This time reversal converts phase lags to leads.
When the time-reversed signal is passed again through the
prefilter and then through the physical closed-loop system �T,
in the dark-shaded box�, the phase leads lag just enough to
produce a net-zero phase shift. Because the signals pass
through F2 twice, the low-pass filtering is effectively four-
pole, rather than two. �Compensating for this double filtering
by using a single-pole filter in F leads to other complications
because F is then an improper transfer function, with a fre-
quency response that goes to infinity at high frequencies. It
was simpler to use the same two-pole filter in both the causal
and acausal cases.�

In principle, perfect acausal feedforward requires knowl-
edge of the desired control signal into the indefinite future. In
practice, one needs to know it only a short time ahead. In
Fig. 4, we see that signals propagated backward in time will
decay at a time scale �max set by the longest decay time of the
combined system F2�s�T2�s�. Thus, one need calculate only
several times �max into the future. Implicitly, we have done
this in the work reported here, as we calculate waveforms
over three periods of the driving signal. The beginning of the
first period and the end of the last show transients. We ex-
tract the middle period and use it as the basis for a periodi-
cally repeated waveform sent to the stage. In the engineering
literature, rather more complicated designs lead to explicit
formula to compute the response in real time, with a finite
amount of “preview” or “lookahead” required.30,31 In our ap-
plication, we do not vary the desired waveform during a
scan, and the simpler method described here suffices.

IV. RESULTS

A. Stage performance

Figure 5 shows the stage response for three different
driving frequencies �10, 40, and 100 Hz�. The feedforward
filter was calculated using the two-pole model. The goal was
for the stage’s motion to reproduce a triangular waveform
�dotted line� with 1 �m amplitude. Figure 5�a� shows the
stage’s normal response to the driving signal. Because its
bandwidth is less than 30 Hz, there is a noticeable phase lag
already at 10 Hz. By 100 Hz, the response is completely
unusable. Figure 5�b� shows the response to the modified
input signal given by the causal feedforward algorithm
�dashed line�, which largely reproduces the desired signal,
even at 100 Hz. The main differences are a small phase lag
and a rounding of the corners consistent with the 250 Hz
low-pass filter in the feedforward algorithm. Figure 5�c�
shows the response of the acausal filter, which is similar to
the causal case but without the phase lag.

In Fig. 5, at 100 Hz, one can observe a small amount of
oscillation about the desired trajectory that comes from ex-
citation of the mechanical resonance of the stage. In the
1 �m range shown in the figure, the oscillations have an
amplitude of �3%, or 30 nm. Their amplitude is reduced to
about 20 nm for the acausal filter. In that case, since the
signal passes through the 250 Hz low-pass filter twice, the
response is that of a four-pole filter rather than a two-pole,

which reduces excitation of the resonance at the cost of more
rounding of the waveform “corners.” The resonance peaks
are not compensated for in the second-order model. In Sec.
IV B, below, we explore the performance of the fourth- and
sixth-order models, which remove the first and second reso-
nant peaks, respectively. Since our actual applications are
more typically at around 10 Hz, where phase delays and
rounding of the triangular waveform are an issue but excita-
tion of the resonances is negligible, the second-order model
will turn out to be sufficient. Another reason for favoring a
lower-order model is that the mechanical resonance fre-
quency changes significantly with load. Thus, a correction
calculated for one load would be less effective at another
load. �Devasia32 has done a formal calculation of the effect
of uncertainty on feedforward schemes. The conclusion
matches the reasoning advanced here: feedforward is helpful
only if the uncertainty in the dynamics is small. Since the
system is linear, the size may be assessed at each frequency,
with the overall conclusion being that in this case feedfor-
ward is useful at low frequencies but much less so at high
frequencies.�

Another general issue is the choice of bandwidth for the
feedforward stage. �In the example discussed here, the feed-
forward bandwidth �lp=9.3�0.� As �1 is increased, so will
the magnitude of the modified input increase. The dashed
curves showing the modified input signal r� in Fig. 5 illus-
trate this point clearly. As one goes from 10 to 40 to 100 Hz,
the ratio of the range of the modified signal to the original
increases from 1.2 to 5.7. A similar increase would occur �for
fixed input frequency� as �lp is increased. The basic point is
that requiring high-frequency motion requires large-
amplitude inputs. For our applications, these limitations were
not too severe because we are mostly interested in scans that
are small �1−10 �m� compared to the overall range of the

FIG. 5. Collage showing time series of measured stage responses using the
two-pole dynamical model T2 and its associated prefilter F2. Dotted-line
triangular waveform represents the desired stage response
�1 �m amplitude�. Dashed lines represent the signal fed to the stage. Solid
lines represent the measured sensor signal. �a� Normal stage operation; �b�
causal feedforward algorithm; �c� acausal feedforward algorithm. The phase
shifts in the stage response observed in �a� and �b� are removed in �c�. �Use
the vertical dotted line as a reference.�
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stage �100 �m�. The large overall range is important in being
able to position the origin of the scanned images. Thus, even
a nearly tenfold increase in amplitude reduces the available
offset by only 6% for 1 �m scans. By contrast, large scans
are more severely constrained: with a 9.3-fold increase, the
largest possible scan is only about 16 �m. For scan frequen-
cies limited to 10 Hz, the ratio between applied and nominal
scan ranges is 1.2, which reduces the maximum scan range
to about 80 �m. These limitations are peculiar to working
with a stage under closed-loop control. The large required
amplitudes in the control signal must “fight the low-pass
filter” imposed by the closed-loop regulation. In the work on
open-loop piezotube scanners,6,9 there is no such low-pass
filter and the control signals do not have to become large. On
the other hand, one must then compensate for the nonlinear,
hysteretic open-loop properties of the piezotube scanners.7

B. AFM images

We have tested the performance of the feedforward al-
gorithm in our AFM. Figure 6 shows a series of images of a
standard calibration sample. The left-hand image 6�a� shows
an image taken at 40 Hz, not using the feedforward tech-
niques discussed here. Because the stage has a two-pole, 42
Hz low-pass response, there is significant phase lag. The
usual practice of AFM controllers is to hide the effects of
phase lags by “overscanning”—i.e., one scans an image
larger than desired, so that one can show only the central
portion. In Fig. 6�a�, the phase shift is roughly 90°, as indi-
cated by the vertical white dashed line, which shows the
“turnaround” point on the image. With no phase shift, this
would coincide with the right edge of the image �which is
scanned to the left�. Here, the shift is about half the size of
the image �or one-quarter the back-and-forth length�.
Figures 6�b�, 6�d�, and 6�f� show the results of applying

causal feedforward filters of the form discussed in Sec. III C,
with two, four, and six poles, respectively. The models for
each are shown in the Bode plots of Fig. 2. In each case, we
regularized the behavior of the prefilter by using a Butter-
worth filter of two, four, and six poles, with bandwidth set at
250 Hz. The phase lag is significantly reduced from 6�a�. It
increases with the order of the filter, simply because the
phase shift in an nth-order filter is asymptotically �� /2�n.

Figures 6�c�, 6�e�, and 6�g� show images taken by
acausal versions of the filters in Figs. 6�b�, 6�d�, and 6�f�.
Notice that the phase shift is reduced significantly but not
eliminated. Notice, too, that it improves with the order of the
filter. If the model of the system’s dynamics were perfect,
one would expect no phase shift. Since each model is accu-
rate only up to some frequency limit, there is a residual
phase shift that reflects the contributions from unmodeled
dynamics. As the model improves, this residual phase shift
decreases.

To summarize these results, we list in Table I the phase
shifts measured from the images in Figs. 6�b�–6�g�, for
causal and acausal feedforward filters of second, fourth, and
sixth orders, respectively, as well as the shifts predicted for
Butterworth filters of the corresponding order. Numbers in
the first column are phase shifts for the causal filters �Figs.
6�b�, 6�d�, and 6�f��. With no modeling error, the phase de-
lays of the causal filters should match those of the corre-
sponding Butterworth filter, and we would expect no phase
delay for the acausal filter. In Table I, we see extra phase
shifts in both cases, which are due to the unmodeled dynam-
ics. As the order of the dynamic model increases, these re-
sidual phase shifts decrease �the model is accurate to higher
frequencies�. Since the same unmodeled dynamics is present
in both the causal and acausal cases, the difference between
their phase lags �column 3� should match that of an ideal
Butterworth filter �column 4�. These differences agree rea-
sonably well, within the accuracy of the phase-shift
estimates.

Our feedforward algorithm also shows a dramatic im-
provement in the amplitude response, as demonstrated by
comparing the �horizontal� spacing of dots on images
scanned with and without feedforward. In Table II, we list

FIG. 6. AFM images of a calibration grating. All images are taken at 40 Hz
�v=800 �m/s�, scanning to the left. The white vertical dashed lines indicate
the “turnaround” point in the image, with the distance to the right side of the
image proportional to the phase lag. �a� Image taken by the scanner in its
normal mode, without feedforward. �b�, �d�, �f�: Images taken with causal
feedforward filters of second, fourth, and sixth orders, respectively. �c�, �e�,
�g�: Same, with acausal filters.

TABLE I. Phase shift �degrees� produced by different types of filters.

Filter order Causal Acausal Difference Butterworth
Second −21 −10 −11 −13
Fourth −36 −8 −28 −24
Sixth −42 −7 −35 −36

TABLE II. Average spacing ��m� of dots measured on images with differ-
ent types of causal filters, compared to actual spacing and that expected
without feedforward.

Filter order Causal Expected
Second 2.73 2.84
Fourth 2.97 3.03
Sixth 2.72 2.70

Actual spacing 2.90
No feedforward 4.83
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the average horizontal spacings measured from Figs. 6�b�,
6�d�, and 6�f�, together with those expected using the causal
prefilters. �The acausal case is similar.� The expected values
are obtained from the measured amplitude response
�Fig. 2�a�� of the physical system, combined with the ana-
lytical forms of the causal prefilters, F2�s�, F4�s�, and F6�s�.
The actual spacing of 2.90 �m is estimated from Fig. 7�a�,
an image scanned at a low frequency under feedback. The
uncertainty of ±0.08 �m for all measurements comes from
the pixel resolution. The spacings observed using causal
feedforward agree, within uncertainties, with the expected
values. For the second-order filter, vibration excited by turn-
around motion of the stage has distorted the part of image
near the turnaround; therefore, the spacings of dots in this
part are not counted toward the average value shown in the
table. By contrast, if no feedforward is applied, the limited
bandwidth implies a large distortion, to 4.83 �m at 40 Hz.
�We cannot measure the spacing from the no-feedforward
image in Fig. 6�a�. The turnaround point of the image is
shifted into its middle, and the horizontally related dots are
actually images of the same structure.�

We see, then, the clear improvement in the amplitude
response produced by all of the feedforward filters. The im-
provement, however, does not monotonically increase with
the order of the filter. This results from an imperfect cancel-
lation of resonances by the zeros in the various filters. The
residuals slightly alter the gain at a given scan frequency.
Usually, in AFM operation, one can calibrate measurements
relative to features of known size in the images. In the rarer
cases when absolute accuracy is important, one can do the
kind of calculation done here to correct the scale at any given
scan frequency. Since the response is predictable, it can be
corrected easily.

Finally, Fig. 7 shows the performance of the acausal fil-
ter at different scan frequencies. Figure 7�a� shows a typical
“normal” AFM image, scanned at 1 Hz, without feedforward.

Figures 7�b�–7�d� show the results of scans at 20, 40, and
100 Hz using the fourth-order acausal filter discussed in the
previous paragraph. Although the contributions of the un-
modeled dynamics begin to be significant at 40 Hz, the im-
age �away from the turnaround point� is accurate even at 100
Hz. At that frequency, the sampling rate of our AFM for the
z dynamics �0.1 ms� limits the image resolution. This limita-
tion has nothing to do with the translation stage or the feed-
forward dynamics.

V. DISCUSSION

We have shown that a simple feedforward algorithm can
increase the usable bandwidth of a closed-loop piezoelectric
translation stage by nearly an order of magnitude. Of course,
if one starts with a stage with higher resonant frequencies, a
higher scanning bandwidth could be obtained. There are
stiffer versions of the design we use that claim a fivefold
increase in resonant frequency.20 We would expect that scan
rates of up to 1 kHz would be possible on such stages. Other,
more rigid stage designs with higher resonant frequencies33

would allow even higher scanning frequencies.
Our choice for an upper-bandwidth limit was a compro-

mise between the desire to improve the bandwidth and the
desire to formulate a robust solution that would work for
different mechanical loads and different laboratory tempera-
tures. The exact tradeoffs between performance and robust-
ness, though, should be set by the individual user—much as
a motor is tuned differently for a race than for city driving.
Croft and Devasia6 show that one can optimize feedforward
algorithms to obtain significant improvement in performance
over simpler implementations. This optimization can be done
by evaluating an integral over the square of the error between
actual and desired control signal plus a term involving the
control effort, with appropriate frequency-dependent relative
weights. Since the actual solution depends critically on the
choice of weight between small control effort and solution
accuracy, the optimal method leads to waveforms similar to
the ones used here, which were calculated in a more informal
�simpler� way. In more recent work, Zou et al.11 use an in-
teresting variation where they numerically invert the mea-
sured transfer function rather than use an analytic fit. They
then use the numerical inversion as the starting point for an
iteration scheme where the candidate input waveform is sent
through the system �a piezoelectric stick-slip rotary motor in
their case�, the output is measured, and the input is corrected
in proportion to the difference between the actual and desired
outputs. The algorithm converges in about ten iterations and
gives roughly a fivefold improvement over the numerical
inverse. �A numerical inverse will perform less well than an
analytic fit, as measurement noise is included in the inverse
dynamics.� The tradeoff is that the optimized input must be
calculated �with the iterative process� for each situation �fre-
quency, amplitude, load, etc.�. More recently, Leang and
Devasia have extended this technique by using adaptive
methods to “learn” the characteristics of the physical system
and adjust the system parameters accordingly.34 Such a tech-
nique can handle slowly varying conditions. With all of these

FIG. 7. AFM images of calibration grating. �a� “Standard” image, 1 Hz,
without feedforward. �b�–�d� Images taken with a fourth-order feedforward
filter, at indicated scan rates. All images are scanned over a 10	10 �m2

area.
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more advanced techniques, one must decide whether the gain
in performance is worth the additional effort in any given
situation.

From a broader point of view, feedforward techniques
can be helpful in many other situations. For example, feed-
back algorithms that are optimized to regulate a fixed value
�of temperature, pressure, etc.� will not perform well when
changing the setpoint. A feedforward prefilter can address
this issue. Another category of applications is in the cancel-
lation of disturbances. If independent measurements of the
disturbance are available, they may be used to cancel their
effect on the controlled system. In short, feedforward is a
technique that deserves wider use, and combining feedfor-
ward with standard feedback control gives a particularly
simple and robust approach.
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