
Allosteric regulation of chaperonins
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Chaperonins are molecular machines that facilitate protein

folding by undergoing energy (ATP)-dependent movements

that are coordinated in time and space by complex allosteric

regulation. Recently, progress has been made in describing the

various functional (allosteric) states of these machines, the

pathways by which they interconvert, and the coupling

between allosteric transitions and protein folding reactions.

However, various mechanistic issues remain to be resolved.
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Introduction
The classical Monod-Wyman-Changeux (MWC) [1] and

Koshland-Némethy-Filmer (KNF) [2] models of coop-

erativity were originally formulated in the 1960s with

metabolic regulation of enzyme activity in mind. More

recently, it has become apparent that allosteric theory is

also required for describing the workings of various bio-

molecular machines. The Webster’s dictionary definition

of a machine is: ‘‘an assemblage of parts that are usually

solid bodies (but include in some cases fluid bodies or

electricity in conductors) and that transmit forces, motion

and energy one to another in some predetermined man-

ner and to some desired end’’. Chaperonins are molecular

machines that facilitate protein folding by undergoing

energy (ATP)-dependent rigid-body movements [3,4]

that are coordinated in time and space by complex

allosteric regulation [5–7]. They are made up of two

oligomeric rings, stacked back-to-back, with a cavity at

each end that provides a protective environment for

protein folding. Chaperonins can be divided into two

groups: group I, found in eubacteria, mitochondria and

chloroplasts [6,7]; and group II, found in archaea and the

eukaryotic cytosol [8–10]. Group I chaperonins consist of
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two identical (as in GroEL from Escherichia coli) or non-

identical (as in chloroplast chaperonins) homo-oligomeric

rings [6,7]. Group II chaperonins consist of two identical

eight- or nine-membered hetero-oligomeric rings com-

prising two types of subunits in the case of the Thermo-
plasma acidophilum thermosome or eight different

subunits in the case of the cytoplasmic eukaryotic cha-

peronin containing TCP-1 (CCT) [8–10]. Crystal struc-

tures of GroEL [11] and the thermosome from T.
acidophilum [12] indicate that group I and II chaperonins

share a similar domain arrangement. Each subunit con-

sists of three domains: an equatorial domain that contains

an ATP-binding site; an apical domain that forms the

opening of the central cavity and binds non-folded poly-

peptide substrates; and an intermediate domain that

connects the apical and equatorial domains. Group I

chaperonins function in conjunction with a heptameric

ring-shaped co-chaperonin, such as GroES in E. coli, that

caps the cavity of the so-called cis ring in the R state [13],

thereby triggering the dissociation of apical-domain-

bound protein substrates into the cavity. By contrast,

group II chaperonins operate without a GroES homolo-

gue, whose function appears to be mimicked [14] by an

extra sequence located at the tip of the apical domain —

the ‘helical protrusion’ [8,12].

Allosteric regulation is responsible for the transitions

between different functional states of proteins (or other

macromolecules) in response to changes in environmental

conditions. It is often achieved via changes in the con-

formation of multimeric proteins induced by ligand bind-

ing [15]. Such a mechanism can also lead to the repeated

cycling between different functional states that is char-

acteristic of molecular machines. Hence, a preliminary

understanding of how chaperonins function as machines

requires knowing their main allosteric states and asso-

ciated functional properties. A deeper question concerns

the nature of the transitions between the relatively stable

different allosteric states. In other words, do populated

kinetic intermediates exist? Are there single or parallel

pathways between states? Such questions are often

ignored (and might indeed be of little importance) when

dealing with allosteric regulation in the context of meta-

bolic control (e.g. oxygen uptake and release by haemo-

globin), but they are of considerable potential significance

for molecular machines because their efficiency may be

path dependent. Finally, one would like to understand

the mechanism of coupling between conformational

changes in chaperonins and the folding process in struc-

tural and energetic terms. Progress with regard to our

understanding of the above issues will be reviewed in

what follows.
www.sciencedirect.com
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Intra-ring and inter-ring allostery
Steady-state kinetic measurements of initial rates of ATP

hydrolysis by GroEL at different concentrations of ATP

showed that GroEL undergoes two ATP-induced allos-

teric transitions: one with a midpoint at relatively low

ATP concentrations and the second with a midpoint at

higher concentrations of ATP [16,17]. Each of the allos-

teric transitions is reflected in intra-ring positive coopera-

tivity in ATP binding and hydrolysis by GroEL, with

respect to ATP [18,19] and K+ [20]. The higher ATP

concentration required to effect the second allosteric

transition reflects inter-ring negative cooperativity in

ATP binding. A nested allosteric model (Figure 1) of

cooperativity in ATP binding by GroEL that accounts for

these findings was put forward [16,17], in which, in

accordance with the MWC representation [1], each ring

is in equilibrium between two states: a tense (t7, T) state,

with low affinity for ATP and high affinity for non-folded

protein substrates; and a relaxed (r7, R) state, with high

affinity for ATP and low affinity for non-folded protein

substrates [21,22]. The T and R states are, therefore,

protein substrate acceptor and release states, respectively.

In the presence of increasing concentrations of ATP, the

GroEL double-ring switches in a sequential manner from

the TT state (both rings are in the T state) via the TR
state to the RR state, in accordance with the KNF model

[2]. Hence, MWC-type allosteric interactions that lead to

intra-ring positive cooperativity in ATP binding by

GroEL are nested in KNF-type allosteric interactions

that lead to inter-ring negative cooperativity in ATP

binding. Plots of the observed rate constant of the

T ! R transition as a function of ATP concentration
Figure 1

Scheme showing the different allosteric states of wild-type GroEL and

the D155A mutant. In this scheme, t and r represent the conformation

of a subunit in the T and R states, respectively, and tnr7–n indicates

a ring with n adjacent subunits in the t state and 7–n adjacent subunits

in the r state. In the absence of ligands, GroEL is predominantly in

the relatively symmetric t7t7 state. The break in symmetry between

rings in the D155A mutant is indicated by the blue and red colours.

In the presence of ATP, the equilibrium of the ATP-bound ring is

shifted toward the r7 state in the case of wild-type GroEL, and the

t4r3 and r7 states in the case of the D155A mutant. A further shift

in the equilibrium toward the r7r7 state takes place at higher ATP

concentrations. Non-folded protein substrates shift the equilibrium

in the opposite direction.
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for double-ring GroEL variants (in which the mutations

F44W [23], Y485W [24] or R231W [25] were introduced to

facilitate the following of ATP-induced conformational

changes by monitoring time-resolved changes in fluores-

cence) have also been found to be bi-sigmoidal. By

contrast, a plot of initial rates of ATP hydrolysis by a

single-ring version of GroEL (SR1) at different concen-

trations of ATP was found to be mono-sigmoidal [26],

indicating that it undergoes only one allosteric transition,

as predicted by the nested model.

Considerable variation has been found in the intra-ring

allosteric properties of chaperonins. Homo-oligomeric

GroEL displays positive cooperativity in ATP hydrolysis,

with respect to ATP, whereas in the hetero-oligomeric

archaeal chaperonin from Methanococcus maripaludis (Mm-

cpn60) [27] and CCT [28], such intra-ring cooperativity is

relatively weak and in the T. acidophilum thermosome, it

appears to be absent [29]. A possible explanation for these

differences is that positive cooperativity owing to the

ATP-induced intra-ring allosteric transitions of group II

chaperonins is masked by apparent negative cooperativity

in ATP binding and/or hydrolysis stemming from the

subunit heterogeneity of these chaperonins [28]. In addi-

tion, the intra-ring allosteric transitions of CCT are

sequential [30�], whereas those of GroEL appear to be

concerted (see below).

By contrast, inter-ring negative cooperativity in ATP

binding appears to be a universally conserved property

of all chaperonins, as it has been observed also in the case

of the group II chaperonins CCT [28,31], Mm-cpn60 [27]

and the thermosome [29]. This is despite the fact that the

role of inter-ring allostery in GroEL is associated with the

function of GroES, whereas group II chaperonins appear

to operate without a GroES homologue. In the case of the

GroE system, ATP binding to the distal (trans) ring sends

an allosteric signal that triggers GroES dissociation from

the cis ring, thereby releasing polypeptide substrates from

the GroES-bound cis ring into solution [32]. The rate of

GroES dissociation is increased upon stabilising the distal

ring’s T state by mutation [33] or binding of non-folded

protein substrates [34]. This effect is mirrored by the

observation that GroES binding to the cis ring decreases

cooperativity in ATP binding by the trans ring [35],

thereby promoting the release of protein substrates from

the trans ring [36]. A conundrum is posed by the observa-

tion that GroES dissociation from the cis ring depends on

ATP binding to the trans ring (which is expected to

stabilise it in an R-like state), but is accelerated upon

stabilisation of the trans ring in a T-like state. Although

the mechanism of inter-ring signalling remains unknown,

a transient kinetic phase associated with this process has

recently been identified using the F44W [37] but not

Y485W [38] probe. Interestingly, the value of the rate

constant corresponding to this phase is higher in mutants

with increased intra-ring positive cooperativity, in agree-
Current Opinion in Structural Biology 2005, 15:646–651
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ment with simulations that indicated coupling between

inter-ring and intra-ring allostery [39]. Evidence of cou-

pling between inter-ring and intra-ring allostery is also

provided by the finding that conversion of the out-of-

register alignment of contacts between subunits of oppos-

ing rings seen in wild-type GroEL to an in-register one by

the mutation E461K causes intra-ring cooperativity to be

abolished [40�]. Inter-ring coupling in GroEL is also

reflected in a higher Arrhenius activation enthalpy of

ATP hydrolysis for wild-type GroEL compared with

SR1 [41] and in a decrease in ATPase activity at high

ATP concentrations when ADP must dissociate from one

ring before the other ring can hydrolyse. This decrease is

not observed in the R13G, A126V [42] and E257A (A

Horovitz, unpublished) GroEL mutants or in CCT [28].

Future construction of single-ring versions of group II

chaperonins is likely to shed light on the role of inter-ring

communication in their reaction cycles, which at present

remains unknown.

Structural analysis of allosteric states
The structure of the TT state has been solved at high

resolution in the case of the R13G/A126V GroEL mutant

[11] and, more recently, at a resolution of 6 Å by electron

cryo-microscopy (cryo-EM) for wild-type GroEL [43�]. In

the case of group II chaperonins, the corresponding

structures, referred to as the ‘open’ state, have been

visualised using EM (e.g. [44]) but not in crystals [12],

probably owing to crystal packing and buffer conditions

[45]. Low-resolution cryo-EM studies of R197A GroEL

[46] and the thermosome [47] have revealed structures

that correspond to the TT, TR and RR states. The

notation of T and R refers, however, to all the various

low- and high-affinity states for ATP of an individual ring

[17] that can be distinguished by higher resolution struc-

tural studies. For example, cryo-EM studies of unli-

ganded GroEL have revealed a small but distinct

asymmetry between rings [3,48�], suggesting that a more

appropriate notation for this state might be TT0. In

addition, recent work has shown that the TT state under-

goes structural changes upon polypeptide binding

[48�,49]. X-ray analysis of a GroEL–peptide14 complex

showed that the apical domains rotate clockwise within

one GroEL ring [49], whereas ATP-induced apical

domain rotation is counter-clockwise [3,46]. By contrast,

cryo-EM analysis of the structure of GroEL bound to

a single monomer of glutamine synthetase at 13 Å

resolution showed that the apical domains of both the

substrate-bound and substrate-free rings undergo coun-

ter-clockwise rotations (although not as dramatic as those

documentedfortheATP-inducedstructuralchanges)[48�].

There are also unresolved issues with regard to the

various R states, designated as ‘closed’ in the case of

type II chaperonins. For example, there is controversy

concerning whether ATP binding is sufficient [4,14] or

whether hydrolysis is also required [50] to reach the
Current Opinion in Structural Biology 2005, 15:646–651
‘closed’ state. The crystal structure of the thermosome

in complex with ADP�AlF3 [12] shows that D390 (equiva-

lent to D398 in GroEL) is ligated to AlF3. The D398A

mutant of GroEL was reported to have 2% wild-type

ATPase activity [32] and simulations have suggested that

the T ! R transition in GroEL begins with a downward

motion of helix M that brings D398 into the coordination

sphere of the nucleotide-bound Mg2+ [51]. Hence, it is

puzzling that the T state of GroEL is catalytically more

active than its R state [22], suggesting that perhaps

different sets of residues in combination with D398 are

involved in catalysis by the two states. The contribution

of K+ to catalysis of ATP hydrolysis by GroEL has

recently become somewhat clearer, as a result of the

refined crystal structure of the R13G/A126V mutant in

what should be the RR state (but may not be owing to

crystal packing forces and the mutations). The structure

shows, for the first time, the ligation of K+ to ATP [52].

Finally, also not fully understood is the observation that

crystal structures of the TR state in complex with GroES

and ADP [13] or ADP�AlF3 [53�] appear to be similar,

despite significant differences in stability and function

between the two types of complexes. Interestingly, a

crystal structure of the GroEL–GroES complex from

Thermus thermophilus with bound substrates shows unex-

pected asymmetry in the cis cavity [54�], thus reinforcing

the idea that intra-ring symmetry in chaperonins is not

always maintained [30�,55�].

Pathways of allosteric transitions
Several lines of evidence indicate that the allosteric

transitions of GroEL are concerted ([51,56]; G Lorimer,

personal communication). Interestingly, mutation D155A

in GroEL, which breaks an intrasubunit salt bridge with

R395, converts its intra-ring allosteric transition from

concerted to sequential [55�] (Figure 1), thereby demon-

strating that cooperativity in this system is due to coupled

tertiary conformational changes [51]. By contrast, genetic

[57] and EM [30�] evidence indicates that the intra-ring

allosteric transitions of CCT are sequential. f-value

analysis [58] of the ATP-induced allosteric transitions

in GroEL has shown that the R197–E386 intersubunit

salt bridge is broken in the transition state of the T ! R
switch [59], which takes place via at least two parallel

pathways [60] (although this has been contested [61]).

Evidence of dual pathways is also provided by the bi-

sigmoidal dependence of the rate of the T ! R switch on

ATP concentration observed for certain single-ring ver-

sions of GroEL [25,37]. Indication that the R197–E386

salt bridge is important in the allosteric mechanism of

GroEL has also come from simulations [51]. It has been

suggested that, following the breaking of the R197–E386

salt bridge, a new intersubunit salt link is formed between

E386 and K80 [3]. Such switching of salt bridges has been

observed in the case of other allosteric proteins [15]. The

dramatic effects of the D155A mutation [55�] suggest,

however, that the allosteric mechanism of GroEL is more
www.sciencedirect.com
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complex and involves other interactions. This complexity

is also manifested in the observation that single amino

acid changes at diverse positions throughout SR1 reduce

GroES binding without affecting nucleotide binding,

thereby restoring chaperone activity [62].

Allostery and folding
It has been shown that the extent of cooperativity in

GroEL, with respect to ATP binding, can affect the rate

of substrate folding, probably because the rate of the

T ! R transition is rate limiting [63]. It is not known,

however, whether efficient GroE-assisted folding is

dependent on the concerted nature of the T ! R transi-

tion. Concerted ATP-induced conformational changes in

GroEL may lead to the simultaneous release of different

parts of the protein substrate, thereby increasing folding

rates and/or yields. By contrast, ATP-induced sequential

conformational changes in CCT may facilitate sequential

release and folding of individual domains of multidomain

protein substrates, thereby mimicking co-translational

folding (thought to be more common in eukaryotes

[64]). It has been suggested that the ATP-induced

T ! R transition can lead to forced unfolding (or stretch-

ing), thereby providing misfolded proteins further oppor-

tunity to fold [65]. Evidence in support of this mechanism

was not found in the case of malate dehydrogenase [66]

and the evidence supporting this proposal in the case of

Rubisco has recently been questioned [67]. The observa-

tion that GroEL-bound Rubisco becomes more compact

following ATP- and GroES-induced release [68] also

seems to be inconsistent with the stretching model.

Although this model is now in doubt, the notion that

GroEL carries out work on bound substrates is suggested

by fluorescence resonance energy transfer (FRET) data

[69�]. Horwich and co-workers showed that, in the

absence of polypeptide substrate, the rates and extents

of the GroES/ADP- and GroES/ATP-induced conforma-

tional changes are similar. However, in the presence of

polypeptide substrate, a similar rate and extent of FRET

was observed in the presence of GroES/ATP but not

GroES/ADP [69�]. Hence, polypeptide binding [69�] or

mutations [63] that retard the allosteric transitions of

GroEL (by stabilising its T state) lead to decreased

folding. In the case of polypeptide binding, this effect

can be reversed by GroES/ATP but not GroES/ADP, thus

helping to explain why GroEL in complex with GroES/

ADP is not folding active.

Conclusions
The identity of in vivo substrates [54�] and substrate

recognition mechanisms [70,71] are two still unresolved

issues that have not been discussed in this review (see

Update). Another open issue concerns the possible effects

of chaperonins on folding pathways. For example, are

transition states of folding in bulk solution the same as

those in the cavity of chaperonins under conditions of

confinement [72]? Spectroscopic (e.g. FRET) single-
www.sciencedirect.com
molecule techniques are likely to contribute to our under-

standing of such questions, whereas mechanical single-

molecule techniques may shed light on aspects of

chaperonin function such as forced unfolding. Further

progress in understanding the allosteric mechanisms of

chaperonins will also depend on the availability of crystal

structures of CCT and wild-type GroEL, and high-

resolution EM structures that represent different confor-

mational states in solution.

Update
Recently, there has been further progress in identifying

obligate in vivo substrates of GroEL [73�] and in char-

acterising the conformational states of a chaperonin-

bound folding intermediate of a model substrate [74�].
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