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Abstract
We determine conservative and dissipative tip–sample interaction forces from the amplitude and
phase response of acoustically driven atomic force microscope (AFM) cantilevers using a
non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering)
and atomically flat surfaces of highly ordered pyrolytic graphite. Taking into account the base
motion and the frequency-dependent added mass and hydrodynamic damping on the AFM
cantilever, we develop a reliable force inversion procedure that allows for extracting tip–sample
interaction forces for a wide range of drive frequencies. We systematically eliminate the effect
of finite drive amplitudes. Dissipative tip–sample forces are consistent with the bulk viscosity
down to a thickness of 2–3 nm. Dissipation measurements far below resonance, which we argue
to be the most reliable, indicate the presence of peaks in the damping, corresponding to an
enhanced ‘effective’ viscosity, upon expelling the last and second-last molecular layer.

S Online supplementary data available from stacks.iop.org/Nano/21/325703/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The properties of liquids confined between solid surfaces are
crucial for understanding numerous technological problems
including lubrication and nanotribology, porous media and
nanofluidic devices for biotechnological applications [1].
The key question is to what extent macroscopic continuum
physics—in particular hydrodynamics—can be applied to
describe the systems at such small scales and, if not,
how deviations from the macroscopic behaviour manifest
themselves.

It is by now well established that the structure of the liquid
is altered close to the solid–liquid interface in such a way
that the liquid molecules assume a layer structure parallel to
the interface. This gives rise to oscillations in the average
density and to (conservative) oscillatory solvation forces upon
confining the liquid between two solid surfaces [2]. In
addition to this structuring, some studies also report a strongly
increased dissipation and, in some cases, even solid-like
friction for liquid films with a thickness of several molecular

layers [3, 4]. In contrast, other studies find essentially bulk-like
viscous dissipation, except for the molecular layers directly
adjacent to the solid, which behave more rigidly [5, 6].
According to molecular simulations both solidification and
liquid-like behaviour can be achieved, depending on the
interaction potentials between the solid and the liquid. While
most simulations focused on equilibrium properties and the
resulting conservative forces, Gao and Landman [7] also
reported that the diffusivity in confined liquids is maximum
for surface separations corresponding to a non-integer number
of molecular layers corresponding to states with a reduced
density. The fluctuation–dissipation theorem—if applicable
to these systems—then suggests periodic variations in the
(viscous) dissipation for strongly layered liquids.

Do such periodic variations exist? A number of recent
atomic force microscopy (AFM) experiments addressed this
question using various measurement techniques, including
conventional amplitude modulation (AM) AFM and frequency
modulation (FM) AFM and different driving schemes
(acoustic/base drive versus magnetic drive). While studies
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using the acoustic scheme [8, 9] reported oscillations in
the dissipation, a continuous increase by several orders
of magnitude was reported in the magnetically driven
systems [10, 11]. (Very recently a sharply peaked and periodic
dissipation was also reported in a very careful experiment
using the magnetic scheme [12].) Thus, even for simple
(Lennard-Jones-like) model systems, such as the most widely
used octamethylcyclotetrasiloxane (OMCTS), the question
how confinement affects dissipation has yet to be answered.

From a technical perspective, the acoustic driving scheme
in AFM is frequently criticized for its known sensitivity to
experimental and modelling errors (see [13] in the present
context). Yet, AFM cantilevers driven at sufficiently small
amplitudes are known to behave as harmonic oscillators and
are therefore in principle straightforward to model. This raises
the important—given the dominance of acoustically driven
AFMs—technical question under which conditions and to what
extent reliable interaction forces can be extracted from AM-
AFM measurements. Despite the fact that the relevance of
taking into account the motion of the cantilever base has been
known for a long time [14], it was noticed only recently [15]
that the acoustic driving scheme gives rise to a particularly
strong phase response at low driving frequencies, which offers
the potential of an increased sensitivity.

In this paper we elaborate on our work which was
presented earlier in [15]. While in [15] we presented a model
to describe the cantilever dynamics, we now address both the
technical question of obtaining reliable tip–sample interaction
forces from small-amplitude (AM)-AFM measurements and
the physical question regarding the effect of confinement on
the stiffness and dissipation in confined layers of OMCTS. To
do so, we measure and model the response curve of the AFM
cantilever as a function of the drive frequency incorporating (in
addition to the motion of the cantilever base which was already
discussed in [15]) the frequency-dependent added mass and
dissipation around the cantilever. Subsequently, we measure
the amplitude–phase-distance (APD) curves over a wide
range of driving frequencies and extract the corresponding
conservative and dissipative tip–sample interaction forces.
Eliminating the effect of finite drive amplitudes, we obtain
consistent conservative tip–sample interactions over the entire
range of drive frequencies. The corresponding dissipative
tip–sample forces display peaks at tip–surface distances
corresponding to the expulsion of the last two molecular
layers. The physical origin of (apparent) superimposed
oscillations observed at certain drive frequencies is discussed.
analysing the relative strength of various contributions to the
cantilever damping. We identify an upper limit for the possible
confinement-induced enhancement of the effective viscosity.

2. Materials and methods

2.1. Materials

Amplitude–phase-distance (APD) curves were measured
in octamethylcyclotetrasiloxane (OMCTS purum, �99.0%,
Sigma Aldrich), a non-polar liquid of slightly spheroid
molecules with a major diameter of 1.0–1.1 nm and a minor

diameter of 0.7–0.8 nm, which is known to display pronounced
layering when confined between two solid surfaces [2–11, 15].
To minimize the detrimental effect of residual water [16] we
dried the liquid using 4 Å molecular sieves (Sigma Aldrich)
for several days prior to the measurement. To test whether
water contamination influenced our results, we repeated the
measurements in a closed chamber with a dry nitrogen
atmosphere, which gave the same results (within experimental
error). As a substrate hydrophobic highly ordered pyrolytic
graphite (HOPG, Mikromasch grade ZYA) was used, which
was cleaved using adhesive tape just prior to the deposition
of the liquid (OMCTS). Before each spectroscopy experiment,
the freshly cleaved HOPG substrate was imaged in the liquid
to ensure that the surface was clean and atomically smooth and
that the system was stable.

2.2. AFM measurements

The measurements were performed on a commercial Veeco
Multimode with Nanoscope V controller equipped with a low-
noise head using deflection detection and a stable small piezo
scanner (‘Veeco A scanner’). We used rectangular cantilevers
(Mikromasch NSC36, manufactured of bare silicon or gold-
coated silicon) with various stiffnesses of kc = 3–7 N m−1

and resonance frequencies of f ≈ 80–120 kHz (in air), as
determined using the thermal calibration method [17]1. The
resonance frequency ( f ≈ 30–60 kHz) and quality factor Q
(∼3) in liquid were determined with the same method at a
reference distance of 100 nm above the sample surface (with
a relative uncertainty of <5%). The specific cantilevers were
chosen for their long tip height (h ∼ 25 μm) in order to
minimize the change in hydrodynamic squeeze-out damping
between the cantilever and the solid surface. We verified
that possible variations of the added mass and hydrodynamic
damping around the cantilever were below the detection limit
between the reference distance and 10 nm above the surface.
Prior to the measurements the cantilevers were treated in
a plasma cleaner (Harrick Plasma) for 1 min. After the
measurements the tip was imaged using high resolution SEM
(HR-SEM Zeiss LEO 1550) yielding tip radii of Rtip = 15–
30 nm. The cantilever oscillation was driven at the base
using a modified tapping holder (Veeco MMMC), as described
in [18]. This yields stable drive amplitudes for several hours
and reduces the spurious resonance peaks that are typical of
commercial liquid cells.

APD curves including the average (tapping mode,
TM) deflection signal were recorded over 10 nm tip–
surface distances for variable free oscillation amplitudes and
drive frequencies from 0.07 to 0.5 nm at large distance
(corresponding to peak-to-peak amplitudes of 0.14–1 nm)
and 5–60 kHz, respectively. For each setting a minimum
of 25 measurement curves were recorded and analysed.
The deflection signal in contact with the substrate was
used to calibrate the deflection signal, which is appropriate
for both static and dynamic deflection since we use small
cantilevers compared the size of the laser spot [19] (see also

1 We used the ‘Thermal Tune’ in the Nanoscope 7.20 software, which takes
all the relevant corrections (e.g. temperature, cantilever shape) into account.

2



Nanotechnology 21 (2010) 325703 S de Beer et al

figure 1 supplementary data available at stacks.iop.org/Nano/
21/325703/mmedia). Thanks to the small drive amplitudes, no
higher harmonics were generated within the (Brownian) noise
limit of our system, as verified using a spectrum analyser.

Typically, all APD curves in a set of measurements
displayed several oscillations in the amplitude and phase
response (see also section 4.1) over a period of several hours.
Cantilevers that did not display this stability (e.g. due to a bad
tip or contamination) were discarded. Test measurements did
not display any significant dependence of the results on the
approach speed within a range of 1–10 nm s−1. Therefore a
convenient standard approach speed between 1 and 2 nm s−1

was chosen for all the experimental data presented here. The
drift normal to the surface was typically 0.08 ± 0.03 nm s−1,
as determined from the change in z piezo-voltage at tip–
surface contact. All measurements were performed at a room
temperature of 22 ± 1 ◦C. The temperature next to the sample
was measured to be 27 ◦C, presumably due to local heating
from the electronics in the AFM head.

2.3. Numerical calculations

We simulated the dynamics of the AFM cantilever numerically
using the approach of Garcia and Perez [20]. The programs
for the simulations were written and run in Matlab based on
the code used in [21]. The ordinary differential equation
for the cantilever dynamics including the tip–sample forces
(see below) was solved using a fourth-order Runge–Kutta
scheme. Numerical APD curves for various drive amplitudes
were calculated starting 10 nm above the sample surface down
to 1 nm in 250 discrete steps. At each step, the steady
state amplitude and phase of the oscillation were extracted
from the oscillatory cantilever motion via a fast Fourier
transform. For fitting and validation purposes, the resulting
numerical amplitude and phase versus distance curves were
converted into a distance-dependent stiffness using the same
force inversion formulae (to be described in section 3) as for
the experimental data.

3. Cantilever dynamics and force inversion

Over more than a decade many methods have been developed
to quantitatively map both the conservative and dissipative
interaction forces in dynamic AFM based on different
methods and techniques, varying from small- [14] to large-
amplitude [22] AFM as well as universal methods for both
amplitude modulation (AM) [23–25] as well as frequency
modulation (FM) AFM [26]. In this paper we used AM small-
amplitude spectroscopy.

For typical base-driven atomic force microscopes the
vertical motion z(t) of the cantilever tip can be modelled as
a harmonic oscillator affected by the tip–sample interactions
Fts:

mz̈ + γcż + kcz = kczb + Fts. (1)

Here, kc is the cantilever’s spring constant, zb(t) describes the
displacement of the cantilever base, m is the total effective
mass (including the added mass caused by the motion of the
surrounding liquid) and γc is the viscous damping around the

base driving 

cantilever tip 

solid surface 

(b) 

  γc γint
kint

kc

    γtot

(a) 
z

b+
d

zb

Figure 1. (a) Illustration of the cantilever, where the total motion z of
the cantilever consists of the measured deflection d plus the base
motion zb due to the acoustic driving mechanism. (b) Spring–dashpot
representation of the harmonic oscillator model for acoustic driving
with deflection detection and linearized tip–sample forces.

cantilever. The usual deflection detection scheme measures the
deflection d(t) of the cantilever, which is related to the vertical
tip position by z(t) = d(t) + zb(t) (see also figure 1). Since
the quality factor Q is low in a liquid environment, both d(t)
and zb(t) can be comparable (see, e.g., [14]). In particular for
driving frequencies off resonance the absolute motion of the tip
with respect to the sample surface can be significantly larger
than the measured deflection amplitude, which has important
consequences for the amplitude and phase response of the
cantilever (see also [15, 27]).

Since we use for our measurements very small amplitudes
(much smaller than the characteristic length scale of the
changes in the interactions), we can linearize the tip–sample
force Fts around the (quasi-statically moved) average cantilever
position zc. A Taylor expansion of Fts yields

Fts(zc + z, ż) = Fts(zc, 0) − kintz − γint ż − 1
2 k ′

intz
2

− γ ′
intzż + H.O.T. (2)

where H.O.T. are the higher-order terms, kint = dFts
dz |zc

is the interaction stiffness, γint is the interaction damping
(see figure 1) and Fts(zc, 0) is the equilibrium force on the
cantilever, which shows up in the average deflection. For small
static forces and small drive amplitudes, only the linear terms
need to be considered, Fts(zc + z, ż) = −kint(zc)z − γint(zc)ż,
leading to a simplified version of equation (1):

mz̈ + γtot ż + ktotz = kczb (3)

where ktot = kc + kint and γtot = γc + γint are the total stiffness
and damping, respectively.

We solve equation (3) using the ansatz z(t) =
Atot exp(i(ωt + ϕtot)) = d(t) + zb(t) = A exp(i(ωt + ϕ)) +
Ab exp(iωt), in which ω is the drive frequency, A and ϕ are
the measured deflection amplitude and phase of the deflection
and Ab is the amplitude of the base motion [15]:

A = Ab

√
(kc − ktot + mω2)2 + (ωγtot)2

√
(ktot − mω2)2 + (ωγtot)2

(4a)

and

tan ϕ = −kcωγtot

kc(−mω2 + ktot) − (−mω2 + ktot)2 − (ωγtot)2
.

(4b)
As noted earlier, the total amplitude Atot of the tip motion,

given by Atot = √
(A sin ϕ)2 + (A cos ϕ + Ab)2, can be
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substantially larger than the measured deflection amplitude A
in equation (4a).

In order to extract the physical interaction forces we need
to solve these expressions for the interaction stiffness kint and
damping γint, yielding

kint = −kc + mω2 + kc Ab(Ab + A cos ϕ)

A2
b + A2 + 2Ab A cos ϕ

(5a)

and

γint = −kc Ab A sin ϕ

ω(A2
b + A2 + 2Ab A cos ϕ)

− γc (5b)

where Ab is calculated from the measured free amplitude A
far away from the surface (at 10 nm) using equation (4a)
with the interactions set to zero2. Note that these physical
parameters kint and γint are independent of the specific
measurement technique and should look identical as equivalent
data extracted from, for example, frequency modulation AFM
measurements. Close to resonance, these formulae can be
applied using frequency-independent calibration constants (kc,
m and γc) as determined from calibration measurements of the
resonance frequency and the Q factor far away from the surface
(at 100 nm). For drive frequencies varying over a substantial
range, however, one needs to take into account the frequency
dependence of the motion of the fluid around the oscillating
cantilever [29], which can be achieved by replacing m and γc

by their frequency-dependent counterparts without changing
the structure of equations (4) and (5). Following Sader [30],
we describe the hydrodynamic loading on the cantilever by
a hydrodynamic function � = �′ + i�′′, which yields an
added mass and a damping given by madded = ρ π

4 w2 L�′ and
γc = ρ π

4 w2 Lω �′′ [31]. Here, ρ, w and L denote resp. the
density of liquid, and the width and the length of the cantilever.

� depends on the viscous penetration depth δ =
√

2η

ρω
(η:

viscosity of the liquid) and the cantilever geometry as �′ =
a1 + a2

δ
w

and �′′ = b1
δ
w

+ b2(
δ
w
)2 with a1 = 1.0533,

a2 = 3.7997, b1 = 3.8018 and b2 = 2.736. Using the
calibration constants (kc, Qair, Qliq, ωres,air and ωres,OMCTS)
applied at resonance allows for calculating the frequency-
independent prefactor in both the frequency-dependent added
mass and damping.

The relevance of this frequency-dependent correction
becomes apparent from the amplitude and phase response of
the cantilever far away from the surface. Figure 2 shows
a comparison between the experimental frequency response
(thick black solid lines) and various implementations of the
model. Above the resonance frequency, the experimental
data are distorted by various spikes, which are typical for
AFMs with acoustic driving. To avoid interference with
these features, all measurements described in this paper are
carried out at drive frequencies below the lowest spike. We
therefore also limit the comparison of the model curves to
the frequency range below resonance. The blue dashed lines
show the response curve of a simple harmonic oscillator
(ignoring the base motion), which is shown for reference
and which is obviously not suitable in the present case of a

2 Somewhat differently looking, but equivalent, force inversion formulae were
derived by Jai et al [28].
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Figure 2. Amplitude and phase response of the cantilever versus
normalized drive frequency for ambient liquid (Q = 3). Blue dashed
lines: conventional harmonic oscillator (H.O.). Red solid lines:
deflection signal including base drive (constant damping and added
mass). Green dashed–dotted lines: deflection signal including base
drive with frequency-dependent damping and added mass. Black
lines: experimental response (Au-coated Si cantilever,
ωres/2π = 38 kHz, the spurious peaks above ω/ω0 = 0.95 are due to
the piezo response). Grey line: thermal noise spectrum (Si cantilever,
ωres/2π = 42 kHz). Coloured arrows indicate the measurement
frequencies of the data shown in figure 3.

low Q environment [14, 15, 27]. The red thin solid curves
represent the frequency response according to equations (4)
(i.e. including the base motion) for constant m and γc. As
described in [15], this correction captures the most important
features of the experimental curves, namely the vanishing
amplitude and the non-zero phase at low frequencies. Yet,
the phase decreases much more quickly towards −90◦ than
observed experimentally, which was left unnoticed previously.
This deviation leads to a substantial phase error if the model is
used to extract tip–sample interaction forces from measured
APD curves at low frequencies. In contrast, the green
dashed–dotted model curve, which incorporates the frequency
dependence of m and γc, produces a much more satisfying
agreement also at the lowest frequencies and thus reproduces
the global shape of both amplitude and phase response over
the entire frequency range—notwithstanding some residual
deviations.
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Figure 3. Amplitude A and phase ϕ versus distance curves upon approaching the surface (total free amplitude (a) 0.117 nm, (b) 0.129 nm and
(c) 0.320 nm; resonance frequency ωres/2π = 38 kHz, Au-coated Si cantilever) for three different driving frequencies: (a) ω/ω0 = 0.95,
(b) ω/ω0 = 0.66 and (c) ω/ω0 = 0.16. The different curves in (b) indicate the reproducibility of the measurements (a smoothing filter was
applied to eliminate high frequency noise).

4. Results

4.1. Measurements

Figure 3 shows APD curves measured with the same cantilever
at three different frequencies close to and below resonance.
We chose these frequencies with special care. At these
frequencies the calculated cantilever response matches the
measured response very well and no spurious peaks were
observed in the spectra (figure 2). For all driving frequencies,
both the amplitude and the phase display oscillations with a
periodicity varying from 0.7 to 0.9 nm from curve to curve
reflecting the diameter of the OMCTS molecules. Close to
resonance (figure 3(a), ω/ω0 = 0.95), the oscillations are
clearly visible in both the amplitude and the phase signal. The
oscillations in the phase are approximately symmetric around
−90◦. The oscillations in the amplitude are superimposed
on an overall decrease of the amplitude at small distances.
On the wing of the resonance peak (figure 3(b), ω/ω0 =
0.66), the oscillations in the amplitude are stronger and more
peaked (the different curves indicate the reproducibility), while
they almost disappear in the phase response. At the lowest
frequency (figure 3(c), ω/ω0 = 0.16), a strongly oscillatory
response appears again in the phase, whereas the oscillations in
the amplitude become less pronounced and are superimposed
on an overall increase towards small distances. The same
trends as a function of frequency are observed for all free
amplitudes. For the highest free amplitudes, the amplitude and
phase modulations decrease systematically, as noted earlier by
others [8]. Using the results of figure 2 we can qualitatively
understand the frequency-dependent response in figure 3, as
already discussed in [15]. Briefly, at resonance (ω/ω0 = 0.95)
the slope in the amplitude response is smaller than on the
wing (ω/ω0 = 0.66), leading to a less-pronounced amplitude
response in figure 3(a) than in figure 3(b), whereas the opposite

holds for the phase response. The strong phase response at low
frequencies is caused by the base driving scheme. As discussed
in [15], the phase response (red thin solid lines) shows a
gradual reduction in the phase to −90◦ for ω → 0. In this limit,
equation (4b) can be approximated by tan ϕω→0 ≈ ωγt

kint(1+kint/kc)
,

which is very sensitive to changes in the interaction stiffness
kint. In particular, ϕ is expected to vary between zero and 180◦
for ω → 0 as kint changes sign as a function of distance, as is
the case for oscillatory solvation forces.

The data in figure 3 represent typical APD curves selected
from a large dataset. The overall behaviour of the curves is very
reproducible, as evidenced by the selection of amplitude curves
shown in figure 3(b). Yet, details such as the number of visible
oscillations cycles can vary from curve to curve. Figure 4
shows the distribution of the number of oscillations observed
in a number of consecutive APD curves at several locations
on the sample surface under otherwise identical conditions.
Regarding the fact that the tip–sample interaction is mediated
by merely a few hundred molecules under the tip, we attribute
the variations in the number of oscillations to the stochastic
nature of the molecular motion. This distribution does not
affect the validity of the qualitative trends as a function of
frequency shown in figure 3.

4.2. Analysis of the measurements

4.2.1. Tip–sample interaction forces. To extract the tip–
sample interaction forces from the measured data, we apply
equations (5) to the measured APD curves shown in figure 3.
Before doing so, we need to realize that the measured phase
is affected by a phase offset due to the measurement system.
The agreement between the experimental phase response and
the model curve in figure 2 shows that (except for the spurious
peaks at high frequencies) this phase offset is a frequency-
independent constant. To account for it, we measure the

5
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Figure 4. Frequency of the number of oscillations in
amplitude–distance curves from 174 measurements at six different
positions on different terraces of the HOPG (ω/ω0 = 0.75).

phase at a distance of 10 nm above the surface (i.e. outside
the range of the tip–sample interaction) and shift this value
manually to the value obtained from the model curve following
a procedure suggested by Sader and Jarvis [32] in the context
of frequency modulation AFM measurements. Failure to carry
out this procedure correctly leads to cross-coupling between
the phase and amplitude signal and thereby induces two
main effects: (i) the interaction stiffness and the interaction
damping do not decay to zero at large distance and (ii) artificial
oscillations in the dissipation are created in the case of
oscillatory conservative tip–sample forces (see [8, 13]).

Figure 5 shows the interaction stiffness and damping
extracted by inverting the curves shown in figure 3 using
equations (5) using the full frequency-dependent m and γc. The
conservative forces display a strongly oscillatory behaviour
that decays to zero within a few molecular layers, independent
of the applied frequency. The only significant trend (i.e.

beyond typical variations from curve to curve) is a slight
reduction of the amplitude of the force oscillations at the lowest
frequencies. Yet, as we will discuss below, this effect is
caused by the somewhat larger drive amplitude required in off-
resonance measurements.

The extracted total damping shows more variability
between the different drive frequencies. For ω/ω0 = 0.95 and
0.66, an oscillatory behaviour appears, similar to and exactly
out-of-phase with the interaction stiffness with superimposed
peaks. For the lowest drive frequency, the oscillatory behaviour
is absent, yet the peaks at d ≈ 0.9 and 1.7 nm remain visible.
Such sharp peaks in the total damping were consistently found
in many independent experiments with various cantilevers (Si
or gold-coated Si and for various tip radii and spring constants).
Note that the total damping at large distance approaches a
constant value γ ∞

tot , which decreases with decreasing frequency
as expected from the expressions given in section 3.

The degree of consistency shown in figure 5 can only be
achieved using the complete mechanical model for acoustic
driving with deflection detection (see figure 1) including the
frequency-dependent damping and added mass presented in
section 4.1. Neglecting the frequency dependence of the
added mass and damping leads to substantial deviations of
the damping forces at low frequencies. If the base motion
is neglected (i.e. upon using a simple harmonic oscillator
model) both conservative and dissipative forces are completely
inconsistent between low and high frequencies, as expected
(see [14]). Both of these findings are obviously consistent
with the deviations found for the modelled frequency response
curves (figure 2).

4.2.2. Conservative forces and amplitude dependence. For
tip–surface distances beyond 1 nm, the conservative force
curves can be fitted rather well with an exponentially decaying
cosine profile (see figure 2, supplementary data available at

    ω / ω0 = 0.66    ω / ω0 = 0.16(a) (b) (c)
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Figure 5. The interaction stiffness kint and total damping γtot versus tip–surface distance extracted from the amplitude and phase response of
the cantilever (curves in figure 3) using equations (5) with frequency-dependent damping and added mass. Left column: ω/ω0 = 0.95;
middle: ω/ω0 = 0.66; right: ω/ω0 = 0.16. The black dashed lines denote the damping of the cantilever γc.
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the cantilever (ω/ω0 = 0.93, kc = 1.9 N m−1 and Q = 2.7) versus
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amplitude (80 pm, 160 pm, . . . 400 pm) increasing along the arrow
from dark blue to turquoise.

stacks.iop.org/Nano/21/325703/mmedia), which is known to
approximate the shape of oscillatory solvation forces rather
well [2]:

kint(zc) = Kint cos(2πzc/σ) exp(−zc/ξ). (6)

Fitting equation (6) to the experimental data at variable
frequency, we find an average periodicity σ = 0.78 ± 0.1 nm
and a decay length ξ = 1.2 ± 0.2 nm. Equation (6) provides a
good fit to the experimental data for distances beyond the first
molecular layer, as illustrated in supplementary data (figure 2
available at stacks.iop.org/Nano/21/325703/mmedia). (The
region d <∼ 0.75 nm was excluded in the fitting process.)
The fitting parameter Kint yields a measure for the strength of
the oscillatory solvation forces.

Before comparing the data at variable frequencies, we note
that the (apparent) strength of the oscillatory solvation forces
depends on the amplitude of the cantilever oscillation. If the
free amplitude of the cantilever becomes comparable to the
characteristic length scale of the interactions the amplitude
of the oscillations in both amplitude and phase as well as
in the resulting interaction forces decreases, as shown in

0.0 0.2 0.4
0

1

2

K
in

t [
N

/m
]

Ainf[nm]tot

Figure 7. Apparent amplitude K int of the fitted interaction stiffness
versus total cantilever amplitude A∞

tot extracted from the amplitude
and phase response (ω/ω0 = 0.92, resonance frequency
ω0/2π = 36 kHz). Symbols: experimental results (Si cantilever);
error bars denote the standard error with 95% confidence interval.
Solid line: numerical calculation (see text for details).

figure 6 (see also [8]). Converting APD curves obtained for
variable A∞

tot between 0.09 and 0.4 nm at a fixed frequency
into interaction forces and fitting the conservative forces using
equation (6), we find experimentally that the amplitude of the
interaction stiffness gradually decreases approximately from
1.2 N m−1 for the smallest amplitude to 0.3 N m−1 for the
largest amplitude (see symbols in figure 7)3.

In the context of the force inversion method used here,
the linearization of the tip–sample interaction forces, as
described in equation (2), provides a criterion for the maximum
acceptable total amplitude A∞

tot. For typical numbers for the
periodicity σ = 0.8 nm and for the decay length ξ =
1.1 nm, we find the requirement A∞

tot � 2kint /k ′
int, so

A∞
tot � 0.29 nm. To quantify the expected reduction, we

calculated APD curves inserting the full nonlinear tip–sample
interaction force according to equation (6) into (1) for variable
driving amplitude at a fixed drive frequency close to resonance.
(For simplicity the interaction damping was left out in these
calculations.)

As shown in figure 6, the amplitude of the oscillations
in Atot and ϕtot decreases strongly with increasing A∞

tot, in
qualitative agreement with the experimental data. Note that
appreciable smoothing effects can already be observed for
A∞

tot = 0.16 nm.
Inserting the numerically calculated cantilever response

into equations (5) leads to the apparent interaction stiffness
as a function of the free cantilever amplitude. The solid line
in figure 7 shows the corresponding stiffness amplitude Kint

decreases as a function of A∞
tot, in excellent agreement with

experimental measurements.

3 To exclude the possibility of systematic changes in the experimental
conditions with time, e.g. due to contamination or temperature variation,
the free amplitude was increased and decreased in random order during the
experiments.
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Figure 8. Extrapolated amplitude K int of the fitted interaction
stiffness versus measurement frequency for various cantilevers. (Red
circles: Au-coated Si, ωres/2π = 51 kHz; green triangles: Si,
ωres/2π = 37 kHz; yellow diamonds: Si, ωres/2π = 59 kHz; blue
squares: Au-coated Si, ωres/2π = 38 kHz; error bars denote the
standard error with 95% confidence interval.)

This result explains the apparent reduction of the
oscillatory interaction forces in figure 5(c) (recorded far below
resonance) compared to figures 5(a) and (b) (recorded on
resonance): the off-resonance measurements were performed
using a relatively large amplitude A∞

tot ≈ 0.3 nm (see figure 3)
in order to achieve a similar signal-to-noise ratio as for
the on-resonance measurements. For such large amplitudes,
linearization of the tip–sample interaction forces is no longer
justified, causing the observed apparent reduction of Kint.

This observation may explain some of the discrepancies
between different dynamic AFM measurements carried out
with different free amplitudes.

4.2.3. Conservative tip–sample interaction at variable drive
frequency. Using the result of figure 7, we can correct the
extracted apparent values of the amplitude of the interaction
stiffness Kint and extrapolate them to their intrinsic value
for small drive amplitudes. Figure 8 shows the result for a
dataset consisting of various different cantilevers and types of
cantilevers for a range of drive frequencies from 5 to 58 kHz.
Within the experimental error, we find that the strength of the
oscillatory solvation forces is identical, irrespective of the drive
frequency and of the material of the cantilever.

5. Discussion

5.1. Conservative tip–sample interaction

To compare the present results to previous SFA and
AFM measurements, we convert the interaction stiffness
kint into the normalized force f/R using the Derjaguin
approximation [19, 33, 34]. f/R is proportional to the
interaction energy per unit area of two parallel surfaces at
separation zc. Approximating the local oscillatory pressure
by P(zc) = P0 cos(2πzc/σ ) exp(−zc/ξ), the resulting
amplitude F/R of the distance-dependent oscillatory force

f/R is related to the amplitude Kint of the distance-dependent
oscillatory stiffness kint (fitted using equation (6)) by

F

R
= Kint

2π R
√

( 1
2πξ

)2 + ( 1
σ
)2

(7)

where R is the tip radius. For small drive amplitudes
and using the fitted interaction stiffness, we find a force
amplitude F/R = 9 ± 2 mN m−1, in agreement with earlier
measurements in SFA and AFM [2, 33]. Based on the fact
that tip–sample distances of about one molecular layer and
below need to be excluded from the fitting procedure, one
may speculate that the molecules immediately adjacent to the
substrate surface are in a different, perhaps solidified, state as
compared to the other molecular layers.

The fact that the strength of the solvation forces extracted
from distances beyond the first molecular layer is independent
of the drive frequency indicates that the system does not have
any relevant relaxation times within the corresponding time
interval of 0.02–0.2 ms. For a fluid this is not surprising since
typical molecular relaxation times are substantially faster.

5.2. Dissipative tip–sample interaction

Compared to the conservative interactions, the picture
emerging from the dissipation extracted for various frequencies
is somewhat less consistent. For all frequencies the dissipation
decays to a constant frequency-dependent asymptotic value
γ ∞

tot (ω), as expected. Yet, the data recorded close to resonance
(figures 5(a) and (b)) display oscillations involving both
enhancements and reductions of γtot by several tens of per cent
of γ ∞

tot , while the low frequency data (figure 5(c)) only display
positive peaks at distances corresponding to the minima in kint.

To elucidate whether oscillations in the damping are
realistic and to what extent confinement may enhance the local
dissipation, we consider the dynamics of the cantilever in the
framework of hydrodynamics. The experimental observation
that A and ϕ (as well as kint and γtot) are constant within
several tens of nanometres from the surface (see section 2
and figure 3 of supplementary data available at stacks.iop.org/
Nano/21/325703/mmedia) suggests that it is justified to split
the dissipation into a background contribution due to the global
motion of the cantilever, which is constant within the distance
range covered by the APD curves, and a distance-dependent
contribution arising from the local dynamics in the vicinity of
the tip. This idea is consistent with an approach by O’Shea
and Welland [11], who decomposed the total damping into
separate contributions arising from the motion of different parts
of the cantilever, namely the cantilever beam, the cone of
the tip (modelled as an effective sphere) and the nanoscale
tip itself. For each of these components separate solutions
of the time-dependent Stokes equations for the respective
idealized geometry are known and allow for estimating their
relative importance. The analysis, which we describe for our
experimental situation in the appendix, shows that the total
damping is dominated by the damping of the cantilever beam
in the fluid rather than the squeeze-out damping at the tip.
This is due to the much larger characteristic size of the former
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(typically 100 μm versus 20 nm). Inserting numerical values,
one finds indeed that this background contribution is expected
to be constant, within ∼0.25%, over the range of the APD
curves. The most interesting distance-dependent contribution
is obviously the squeeze-out damping due to the confined fluid
the between tip and sample. It can be described by Reynolds’
classical expression:

γR = 6πηloc

R2
tip

d
. (8)

For distances d of a few nanometres and for a local
viscosity ηloc under the tip equal to the bulk viscosity, this tip
damping is several orders smaller than the beam damping [11].
Only for d → 0 (i.e. �1 nm) and/or if the local viscosity is
dramatically enhanced, e.g. due to confinement effects, this
contribution can lead to a substantial and measurable excess
damping.

The above considerations have important consequences
regarding the nature of variations in the damping, which—
to our knowledge—have not been expressed explicitly so
far: since the background damping is constant within the
experimental error and a few orders of magnitude larger than
the tip damping, γtot can only increase but never significantly
decrease within the uncertainty of AFM measurements
(typically a few per cent). This conclusion results directly
from the relative order of magnitude of the global and the local
dissipation and therefore applies to all AFM measurements
independent of the specific measurement technique (AM-
AFM versus FM-AFM; base drive versus magnetic drive).
As a consequence, we conclude that any reduction of the
global damping, such as the ones shown in figures 5(a)
and (b), must be artificial and caused by either uncertainties
in calibration constants and/or imperfections in the model of
the cantilever dynamics. (For the present case of AM-AFM,
the experimental uncertainties include in particular errors in
the absolute phase [8, 13], in addition to Q and ω0, which are
also important in FM-AFM.)

Since the background damping of the cantilever is constant
within the experimental errors, it is justified to subtract that
contribution and consider the remaining interaction damping
γint = γtot − γ ∞

tot . Using hydrodynamics as a reference
framework, we compare the resulting γint to the expectations
based on equation (8) (see figure 9).

We plot the low frequency data from figure 5(c) in figure 9
because they do not display artificial negative values of γint,
caused by excessive reductions of γtot as discussed above.
Moreover, the low frequency measurements are less sensitive
to calibration errors, while the amplitude and phase response
(as mentioned above) is equally sensitive to variations in the
stiffness and damping (see also supplementary data available
at stacks.iop.org/Nano/21/325703/mmedia and partially [15]).

Figure 9 also shows the calculated Reynolds squeeze-out
damping under the tip (equation (8)), for increasing values
of the viscosity. For ηloc = ηbulk (figure 9), the Reynolds
damping under the tip γR is negligible for all realistic values of
d , in agreement with the discussion above. Yet, the Reynolds
damping resulting from an already 100 times enhanced local
viscosity lies above the experimental data at all distances.

0.0

0.5

1.0

  η= 1000 ηbulk  

 100 ηbulk 

 10 ηbulk  

 γ
in

t [
10

-5
 k

g/
s]

tip surface distance [nm]

0 2 4 6

Figure 9. The extracted interaction damping for ω/ω0 = 0.16 (green
curve). The black curves show the calculated Reynolds damping γR

for increasing viscosity (Rtip = 20 nm).

In the damping measured for d > 2 nm, the data are
consistent with the bulk viscosity and approximately 10× the
bulk viscosity (within the experimental error), corresponding
to 22 mPa s. Larger enhancement factors are incompatible with
our experimental data. Note that the same conclusion can also
be drawn on the basis of all our data recorded, irrespective of
the drive frequency (including the artificial oscillations visible
close to resonance).

A direct conversion of the measured damping into an
effective viscosity seems to provide a reasonable description
of the system down to distances of 2–3 nm. At smaller
separations, the hydrodynamic picture becomes progressively
more questionable given the small number of molecules
involved (a few hundred) and the discrete layer structure of
the confined liquid. The position of the maxima at d ≈ 0.9
and 1.7 nm in the damping in figure 9 coincides with the
minima in the interaction stiffness. It also coincides with a
region of (small) negative slope of the average deflection of the
cantilever (data not shown). The maxima in the damping thus
occur at distances corresponding to attractive forces, where
according to a standard hard sphere-like model as well as
numerical simulations, the average density of the fluid inside
the gap is reduced compared to the bulk value. Such a
reduced density implies more free volume for the molecules
and thus more freedom to exchange sites, which may enhance
the opportunities to dissipate energy compared to the more
compact configuration of completely filled layers that provide
a more elastic response. Hofbauer et al [12] recently proposed
a similar mechanism to explain similar (yet more pronounced)
peaks in the dissipation for confined dodecanol.

Finally, we note that for all distances, except for the
minima in the interaction stiffness (corresponding to the
attractive part of the conservative forces), the damping always
assumes values that are compatible with the bulk viscosity,
indicating that the ‘effective viscosity’ in complete layers
of OMCTS is similar to the value found in the bulk.
Notwithstanding the differences in the confinement geometry
between the surface force apparatus and the AFM, it is
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remarkable how this result agrees with some of the earlier SFA
measurements [5, 6].

The fact that the conservative tip–sample interaction
forces follow the behaviour of hard sphere fluids (equation (6))
and the fact that the effective viscosity is compatible with the
bulk viscosity down to a thickness of three monolayers clearly
suggest that the system behaves liquid-like. The consistency of
this behaviour (including in particular the absence of artificial
negative interaction damping) for the various experimental
conditions investigated support this conclusion. We note
that this finding is at variance with the conclusion of Patil
et al [9] who reported signs of a jamming-like solidification
for confined OMCTS for the range of approach rates used in
the present study and liquid-like behaviour only for approach
rates below 0.6 nm s−1. Their interpretation is based on a
Maxwellian model of a viscoelastic liquid, yet they do not
provide any details regarding the modelling of the cantilever
dynamics. We currently have no explanation for the deviation
from our data.

6. Conclusions

In summary, the results presented in this paper show that it
is indeed possible to extract consistent tip–sample interaction
forces over a wide range of driving frequencies from acoustic
drive amplitude modulation AFM measurements provided that
three elements are correctly taken into account, namely (i) the
motion of the cantilever base, (ii) the frequency dependence of
the added mass and the viscous damping around the cantilever
and (iii) the finite oscillation amplitude of the cantilever. While
the consistency with respect to the conservative forces is very
satisfying, known residual discrepancies due to cross-coupling
with conservative forces limit the accuracy of dissipative forces
measured at AFM drive frequencies close to resonance. This
problem can be circumvented by choosing drive frequencies
substantially below resonance, where the measurement system
is less sensitive to errors in the phase and/or uncertainties in
the calibration constants.

The dissipative forces extracted in this way show that the
‘effective’ viscosity of the liquid confined between tip and
sample is bulk-like down to approximately three molecular
layers. Only for the last two layers are local maxima in
the dissipation found at tip–sample distances corresponding to
minima in the interaction stiffness where the average density
of the confined fluid is expected to be minimal from molecular
simulations.
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Appendix

Consider an AFM cantilever [11] consisting of a rectangular
beam with length L = 120 μm, width w = 35 μm and at
the end a tip with cone radius Rcone = 5 μm and a tip end
with radius Rtip = 10 nm. The cantilever is in the vicinity of a
solid surface and completely immersed in a liquid with density
ρ = 2330 kg m−3 and viscosity η = 2.2 mPa s. The distance
between the beam and the surface is h = d + 25 μm, between
the tip cone and the surface is D = d +8 μm, with the distance
between the tip and the surface d (∼1–2 nm).

For each part of the cantilever, there are contributions
due to the free oscillation far away from the surface and
contributions due to squeeze-out damping close to the surface.
The former contain a constant and a frequency-dependent
component due to the varying added mass, which is responsible
for the reduction of the total damping for large distances at low
frequencies (see figure 5).

The total damping of the cantilever is built up by:

(1) Hydrodynamic damping due to viscous drag and the added
mass over the beam:

γcb = 0.24 ·
(

3πηL + 3
4wL

√
2ρηω

)
.

(2) Hydrodynamic damping due to viscous drag and the added
mass at the tip cone:

γcc = 1
2 (6πηRcone + 3π R2

cone

√
2ρηω).

(3) Hydrodynamic damping due to viscous drag and the added
mass at the tip:

γct = 1
2 (6πηRtip + 3π R2

tip

√
2ρηω).

(4) Reynolds squeeze-out damping under the beam, γRb =
0.24η w3L

h3 .
(5) Reynolds squeeze-out damping under the cone, γRc =

6πη
R2

cone
D .

(6) The interaction damping under the tip, γint.

(a) Reynolds squeeze-out damping under the tip, γint R =
6πηlocal

R2
tip

d .
(b) Changes in the hydrodynamic damping due to

local changes in the added mass and viscosity
under the tip, γint c = 1

2 (6π(ηlocal − η)Rtip +
3π R2

tip(
√

2ρηlocalω − √
2ρηω)).

We define damping 1–5 as the background damping γc and
damping 6 as the interaction damping, γint.

First of all, using these equations, it is easy to show that,
due to the change in Reynolds damping between 100 and 1 nm
tip–surface distance, the cantilever’s damping γc increases by
0.25%. This is far within our experimental error and therefore
our assumption that the extracted changes in damping are
due to tip–sample interactions is valid. (Remember that the
assumption of a constant γc is supported by the experimental
observation that the APD curves are constant for tip–sample
distances varying between 100 and 10 nm.)
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Second, note that the damping due to the Reynolds force
under the tip always results in an increase of the total damping
and therefore a positive interaction damping. Consequently
the negative interaction damping can only be a result of a
change in hydrodynamic damping due to viscous drag and the
added mass at the tip. Since the local density (and accordingly
the viscosity) under the tip varies around its bulk value, this
contribution can be both positive and negative. However, if, in
a worst case scenario, the local viscosity under the tip would go
to zero, the maximum decrease in the calculated total damping
is 0.013%. Our experimentally found decrease in the total
damping is much larger and therefore unrealistic.
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