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We analyze the dynamics of an atomic force microscopy �AFM� cantilever oscillating in liquid at
subnanometer amplitude in the presence of tip-sample interaction. We present AFM measurements
of oscillatory solvation forces for octamethylcyclotetrasiloxane on highly oriented pyrolitic graphite
and compare them to a harmonic oscillator model that incorporates the effect of the finite driving
force for a typical AFM configuration with acoustic driving. In contrast to the general belief, we
find—in both experiments and modeling—that the tip-sample interaction gives rise to a pronounced
signature in the phase at driving frequencies well below resonance. © 2008 American Institute of
Physics. �DOI: 10.1063/1.3050532�

Atomic force microscopy �AFM� is more and more
evolving from a pure imaging technique to a tool for mea-
suring quantitative tip-sample interaction forces, in particular
also in soft matter and biological systems. In this case ambi-
ent liquid damps the cantilever motion and reduces the qual-
ity factor. This poses a challenge, since established methods
for extracting tip-sample interaction forces from experimen-
tal data are based on low damping.1–3 It has been pointed out
that the motion of the base of acoustically driven AFM can-
tilevers �which is negligible in air or vacuum� has to be taken
into account in ambient liquid.4–6 However, the conse-
quences of this effect for the quantitative analysis of the
cantilever dynamics in the presence of tip-sample interaction
forces have not been explored so far.

In this paper we present a harmonic oscillator model
which includes explicitly the finite amplitude of the base
movement and includes the effect of tip-sample interactions.
We compare the frequency-dependent amplitude and phase
response of the model to measurements of oscillatory solva-
tion forces due to molecular layering.7 These forces were
measured in octamethylcyclotetrasiloxane �OMCTS�, a non-
polar quasispherical model liquid, at various frequencies
close to and below resonance. For an AFM setup with acous-
tic driving and beam deflection detection, both the experi-
ments and the analytical solution to the model display a
strong phase response in the cantilever dynamics for low
frequencies.

The measurements were performed on a Veeco multi-
mode �with Nanoscope V controller and “A scanner”� using
rectangular gold coated cantilevers �Mikromasch� with a
spring constant of kc=3 N /m and a resonance frequency of
f �90 kHz in air. Prior to the measurements the cantilevers
were cleaned in a plasma cleaner for 30 min and after the
measurements the tip was characterized using high resolution
scanning electron microscopy imaging �Rtip=50 nm�.
Acoustic driving was realized using an adapted cantilever
holder.8 The spring constant was determined in air using the
thermal calibration method.9 The resonance frequency �f0

=43.1 kHz� and quality factor �Q=3.1� in liquid were deter-
mined with the same method, 100 nm above the sample sur-
face. The OMCTS used in the measurements was dried using

4 Å molecular sieves. The highly oriented pyrolitic graphite
�HOPG� was freshly cleaved just before depositing the
OMCTS on the surface.

Figure 1 shows the measured amplitude and phase dis-
tance curves for three different drive frequencies close to and
well below the cantilever resonance ��0=�kc /m, with m be-
ing the effective mass� upon approaching the HOPG surface.
Far away from the surface the amplitude and phase response
are constant. �The absolute value of the phase far away from
the surface is shifted such in accordance with Fig. 3�b�; see
below.� At a distance of 5–6 nm the response changes due to
the tip-sample interaction. For a driving frequency � close to
resonance �top panel� both amplitude and phase display clear
modulations due to the oscillating tip-sample interaction. The
periodicity of these oscillations ��0.76 nm� reflects the mo-
lecular size of OMCTS �0.9 nm�, as reported before by
others.10–13 The curves shown in the middle panel were mea-
sured at an intermediate drive frequency on the wing of the
resonance peak. Compared to the top panel, the oscillations
are more pronounced in the amplitude and less pronounced
in the phase. All these observations are expected from the
standard harmonic oscillator model: for ���0, the ampli-
tude is close to its maximum and hence not very sensitive to
small shifts of the resonance curve �as induced by the tip-
sample interaction�, whereas the variation in the phase is
maximum.14 If � is chosen on the wing of the resonance
peak, the sensitivity of the amplitude becomes maximized
whereas the phase sensitivity continuously decreases �see
also the thin gray lines in Figs. 3�a� and 3�b��. However, for
���0�bottom panel� we find substantial deviations from the
standard picture: first, we observe an overall increase in the
amplitude upon approaching the surface. Second, the period-
icity in the amplitude oscillations doubles at separations be-
low 2 nm. Third and most strikingly, the oscillations in the
phase become more pronounced again, even more pro-
nounced than at ���0. These observations have important
consequences for the quantitative interpretation of
amplitude-force-distance curves. Figure 2�a� shows the sche-
matic representation of the cantilever and its motion, which
we treat within the harmonic oscillator approximation. As
will become clear in the following, our observations are
caused by a combination of two—in principle well known—
effects. �i� In a highly damping environment �i.e., for low Q�a�Electronic mail: s.j.a.debeer@utwente.nl.
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the dynamics of an acoustically driven cantilever can only be
understood by properly including the base motion zd. �This is
in contrast to magnetically driven cantilevers, where the
measured motion is the only motion.10,13� �ii� Beam deflec-
tion systems measure the deflection x of the cantilever with
respect to the position zd of the base and not with respect to
the average position zc. �This implies immediately that the
amplitude measured via beam deflection goes to zero for �
→0, in contrast, e.g., to an interferometric detection
system;11 see also Fig. 3.� Including the motion of the canti-

lever base zd results in the following equation of motion for
the cantilever:

mz̈ + �cż + kcz = kczd + Fts, �1�

where �c is the damping of the cantilever, kc is the spring
constant, and m is the effective mass of the cantilever includ-
ing the added mass caused by the motion of the surrounding
liquid ��0=�kc /m�. Far away from the surface �d�6 nm, in
the present experiments� Fts is zero. For smaller d, Fts is
finite and changes the resonance behavior of the system. For
sufficiently small cantilever amplitude, Fts can be linearized
to Fts�z , ż�=Fts�zc ,0�−kint�zc�z+−�int�zc�ż. Using the ansatz
that z is described by z=x+zd=Aei��t+��+Adei�t, where A and
� are the amplitude and phase measured in the experiments,
Ad is the amplitude of the driving mechanism, and � is the
drive frequency, Eq. �1� can be solved for A and �:

A =
Ad

��kc − kt + m�2�2 + ���t�2

��kt − m�2�2 + ���t�2
�

�kint�
kt

Ad �2a�

and

tan � =
− kc��t

kc�− m�2 + kt� − �− m�2 + kt�2 − ���t�2

�
��t

kint�1 + kint/kc�
, �2b�

where the approximations hold for ���0. kt=kc+kint and
�t=�c+�int are the total stiffness and damping, respectively.

Figures 3�a� and 3�b� show the calculated amplitude and
phase spectra for the cantilever used in the experiments. In
the absence of tip-sample interaction, the curves are similar

100

200

300
A

[p
m

]

0 2 4 6 8
0

100

200

300

A
[p

m
]

tip sample distance [nm]

0 2 4 6 8

-180

-90

0

ϕ
[°

]

tip sample distance [nm]

-180

-90

0

ϕ
[°

]

100

200

300

A
[p

m
]

-180

-90

0

ϕ
[°

]

FIG. 1. �Color� Amplitude and phase
of the AFM cantilever vs separation
between the solid HOPG surface and
the cantilever tip for different drive
frequencies �top/yellow: 41 kHz
�� /�0=0.95�, middle/green: 32 kHz
�� /�0=0.75�, and bottom/red: 6 kHz
�� /�0=0.15�� relative to resonance
�43 kHz�. The periodicity of the oscil-
lations reflects the size of the mol-
ecules �OMCTS�.
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FIG. 2. �Color� �a� Scheme of the cantilever dynamics, which can be accu-
rately described by including the base motion. In �b� the difference between
the drive signal zd �blue arrow�, the motion of the cantilever z �green arrow�,
and the measured deflection x �red arrow� is drawn. The solid lines show the
response for a positive interaction stiffness and the dashed lines for a nega-
tive stiffness. The measured amplitude is the length of the vector x and the
phase is the angle between the Re axis and the vector x.
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to those calculated by others, displaying, in particular, a de-
crease in the amplitude to zero5,6 and a reduction in the phase
to −90° for �→0.4 It is particularly interesting to analyze
the behavior of the curves in the presence of a finite tip-
sample interaction, as shown here for two examples with
positive and negative interaction stiffnesses of +0.1kc and
−0.1kc, respectively. In line with the asymptotic expressions
in Eq. �2�, the phase becomes increasingly sensitive to varia-
tions in kint for �→0. This explains the experimental behav-
ior of the phase shown in Fig. 1: for the oscillatory tip-
sample interaction due to the confined OMCTS, the
interaction stiffness varies between positive and negative
values and thereby gives rise to dramatic oscillations of the
phase. The physical origin of this behavior becomes clear
from Fig. 2�b�, where we indicate the position of the canti-
lever base zd and the tip z in the complex plane. As explained
above, the quantity measured by beam deflection in an

acoustically driven AFM is the cantilever deflection, i.e., the
difference vector x=z−zd. For low frequencies, the tip dis-
placement z �which is correctly described by the standard
harmonic oscillator; dotted lines in Figs. 3�a� and 3�b�� dis-
plays very little variation in the phase but a finite amplitude
variation �as a function of Fts�. As a consequence, the phase
of the difference vector varies a lot, as found in the experi-
ments. Figure 2�b� also shows why the periodicity in the low
frequency amplitude response doubles in Fig. 1: when the
interaction stiffness varies back and forth between a positive
and a negative value, z moves along the trajectory in the
complex plane that is indicated by the dotted line. The mea-
sured amplitude of the difference vector x, however, displays
twice as many maxima and minima in agreement with the
asymptotic expression in Eq. �2�. Finally, Fig. 3�c� shows an
experimental frequency response curve measured far away
from the surface together with a thermal noise spectrum.
While the response curves display several spurious reso-
nances at ���0 �which are related to the usual resonances
in the driving piezo8�, the low frequency behavior corre-
sponds nicely to the model curves shown in Figs. 3�a� and
3�b�. In particular, the phase displays the marked decrease
that the model predicts for �→0.

In summary we have shown that the combination of
beam deflection detection and acoustic driving gives rise to a
very strong sensitivity of the cantilever’s phase to the tip-
sample interaction for low driving frequencies. The effects
described here are relevant for any experiment attempting to
measure quantitative tip-sample interaction forces, including
nonoscillatory ones, in low Q environments with an AFM
that makes use of this �by far most widely spread� design.
The consequences of the present observations for quantita-
tive force inversion procedures will be reported shortly in a
separate communication.15
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FIG. 3. �Color� Amplitude and phase vs frequency. ��a� and �b�� Thick lines:
calculated model curves following Eqs. �2a� and �2b� for variable interaction
stiffness kint=0, �0.1kc �at �int=0�. Thin dotted lines: standard harmonic
oscillator model. Colored arrows indicate the drive frequencies for the data
in Fig. 1. �c� Measured amplitude and phase response as well as thermal
response vs frequency. �kc=3.7 N /m and the resonance frequency is f
=49 kHz�. The spurious peaks above resonance are due to the response of
the piezodrive.
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