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An analytical model is developed of the interaction of the cantilever tip of an atomic force microscope with
the sample surface that treats the cantilever and sample as independent systems coupled by a nonlinear force
acting between the cantilever tip and a volume element of the sample surface. To maintain equilibrium, the
volume element is subjected to a restoring force from the remainder of the sample. The model accounts for the
positions on the cantilever of the cantilever tip, laser probe, and excitation force �if any�. The model leads to
a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure.
Solutions are obtained for the phase and amplitude signals generated by various acoustic atomic force micro-
scope �A-AFM� techniques including force modulation microscopy, atomic force acoustic microscopy, ultra-
sonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic
microscopy �RDF-AFUM�, and amplitude modulation–atomic force microscopy �AM-AFM� �intermittent con-
tact mode�. The solutions are used to obtain a quantitative measure of A-AFM image contrast resulting from
variations in the Young modulus of the sample. Applications of the model to measurements of LaRC™-CP2
polyimide film using RDF-AFUM and AM-AFM images predict maximum variations in the Young modulus of
24% and 18%, respectively, over a common scan area. Both predictions are in good agreement with the value
of 21% obtained from independent mechanical stretching measurements of the polyimide sheet material.
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I. INTRODUCTION

The atomic force microscope1 �AFM� has become an im-
portant nanoscale characterization tool for the development
of materials and devices. Dynamic implementations of the
AFM �we shall call acoustic atomic force microscopies or
A-AFM� such as amplitude modulation–atomic force mi-
croscopy �AM-AFM� �also called intermittent contact mode
or tapping mode�, force modulation microscopy �FMM�,2
atomic force acoustic microscopy �AFAM�,3,4 ultrasonic
force microscopy,5,6 heterodyne force microscopy �HFM�,7,8

resonant difference-frequency atomic force ultrasonic mi-
croscopy �RDF-AFUM�9 and variations of these
techniques10–16 utilize the interaction force between the can-
tilever tip and the sample surface to extract information
about sample material properties. Such properties include
sample elastic moduli, adhesion, surface viscoelasticity, em-
bedded particle distributions, and topography. The cantilever
tip-sample surface interaction force is generally nonlinear,
although in some operational modes the interaction force can
be taken to a good approximation to be linear.

Various approaches to assessing the nonlinear behavior of
the cantilever probe dynamics have been published.5,6,17–26

We consider here a general, yet detailed, analytical treatment
of the cantilever and the sample as independent systems in
which the interaction force provides a coupling between the
cantilever tip and the small volume element of sample sur-
face involved in the coupling. The sample volume element is
itself subject to a restoring force from the remainder of the
sample. The coupling includes the lowest-order terms in the
nonlinearity. Such terms are sufficient to account for the

most important operational characteristics and material prop-
erties obtained from each of the various acoustic atomic
force microscopies cited above. A particular advantage of the
coupled independent system model is that the equations are
valid for all regions of the force-separation curve and em-
phasize the local curvature properties �functional form� of
the curve. Another advantage is that the dynamics of the
sample, hence energy transfer characteristics, can be ex-
tracted straightforwardly from the solution set using the
same mathematical procedure as that for the cantilever.

We begin in Sec. II by developing a mathematical model
of the interaction between the cantilever tip and the sample
surface that involves a coupling via the nonlinear interaction
force of separate dynamical equations for the cantilever and
the sample surface. A general solution that accounts for the
positions of the excitation force �e.g., a piezotransducer� and
the cantilever tip along the length of the cantilever as well as
for the position of the laser probe on the cantilever surface is
found. The solution contains static terms �including static
terms generated by the nonlinearity�, linear oscillatory terms,
and nonlinear oscillatory terms. Individual or various combi-
nations of these terms are shown in Sec. III to apply as
appropriate to a description of a given A-AFM modality
cited above. Section IV provides a quantitative analysis of
image contrast for each of the A-AFM techniques. In order to
test the validity of the present model, comparative measure-
ments of the maximum fractional variation of the Young
modulus in a film of LaRC™-CP2 polyimide polymer are
presented in Sec. V using the RDF-AFUM and AM-AFM
modalities. The two modalities represent opposite extremes
in measurement complexity, both in instrumentation and in
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the analytical expressions used to calculate the variation in
the Young modulus.

II. ANALYTICAL MODEL OF NONLINEAR
CANTILEVER DYNAMICS

A. General dynamical equations

The cantilever of the AFM is able to vibrate in a number
of different modes in free space corresponding to various
displacement types �flexural, longitudinal, shear, etc.�, reso-
nant frequencies, and effective stiffness constants. Although
any shape or oscillation mode of the cantilever can in prin-
ciple be used in the analysis to follow, for definiteness and
expediency we consider only the flexural modes of a canti-
lever modeled as a rectangular, elastic beam of length L,
width a, and height b. We assume the beam to be clamped at
the position x=0 and unclamped at the position x=L, as in-
dicated in Fig. 1. We consider the flexural displacement
y�x , t� of the beam to be subjected to some general force per
unit length H�x , t�, where x is the position along the beam
and t is time. The dynamical equation for such a beam is27

EBI
�4y�x,t�

�x4 + �BAB
�2y�x,t�

�t2 = H�x,t� , �1�

where EB is the elastic modulus of the beam, I=ab3 /12 is the
bending moment of inertia, �B is the beam mass density, and
AB=ab is the cross-sectional area of the beam.

The solution to Eq. �1� may be obtained as a superposition
of the natural vibrational modes of the unforced �i.e.,
H�x , t�=0� cantilever as

y�x,t� = �
n=1

�

Yn�x��cn�t� , �2�

where the spatial eigenfunctions Yn�x� form an orthogonal
basis set given by27

Yn�x� = � sin qnx − sinh qnx

cos qnx + cosh qnx
��sin qnx − sinh qnx�

+ �cos qnx − cosh qnx� . �3�

The flexural wave numbers qn in Eq. �3� are determined from
the boundary conditions as cos�qnL�cosh�qnL�=−1 and are
related to the corresponding modal angular frequencies �n
via the dispersion relation qn

4=�n
2�BAB /EBI. The general

force per unit length H�x , t� can also be expanded in terms of
the spatial eigenfunctions as28

H�x,t� = �
n=1

�

Bn�t�Yn�x� . �4�

Applying the orthogonality condition

�
0

L

Ym�x�Yndx = L�mn �5�

��mn are the Kronecker deltas� to Eq. �4�, we obtain

Bn�t� = �
0

L

H��,t�Yn���d� . �6�

We now assume that the general force per unit length
acting on the cantilever is composed of �1� a cantilever driv-
ing force per unit length Hc�x , t�, �2� an interaction force per
unit length HT�x , t� between the cantilever tip and the sample
surface, and �3� a dissipative force per unit length Hd�x , t�.
Thus, the general force per unit length H�x , t�=Hc�x , t�
+HT�x , t�+Hd�x , t�. We now assume that the driving force
per unit length is a purely sinusoidal oscillation of angular
frequency �c and magnitude Pc. We also assume the driving
force to result from a drive element �e.g., a piezotransducer�
applied at the point xc along the cantilever length. We thus
write Hc�x , t�= Pce

i�ct��x−xc�, where ��x−xc� is the Dirac
delta function. The interaction force per unit length HT�x , t�
of magnitude PT is applied at the cantilever tip at x=xT and is
not a direct function of time, since it serves as a passive
coupling between the independent cantilever and sample sys-
tems. We thus write the interaction force per unit length as
HT�x , t�= PT��x−xT�. We assume the modal dissipation force
per unit length Hd�x , t� to be a product of the spatial eigen-
function function and the cantilever displacement velocity
given as Hd�x , t�=−PdYn�x��d�cn /dt�. The coefficient Bn�t�
is then obtained from Eq. �6� as Bn�t�= Pce

i�ctYn�xc�
+ PTYn�xT�− �Pd	Yn�x�dx��d�cn /dt�, where the integration in
the last term is taken over the range x=0 to x=L. Substitut-
ing Eqs. �2� and �4� into Eq. �1� and collecting terms, we find
that the dynamics for each mode n must independently sat-
isfy the relation

�BABYn�x�
d2�cn�t�

dt2 + EBI
d4Yn�x�

dx4 �cn

= Pce
i�ctYn�xc�Yn�x� + PTYn�xT�Yn�x�

+ 
Pd�
0

L

Yn�x�dx�d�cn

dt
. �7�
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FIG. 1. Schematic of cantilever tip-sample surface interaction:
z0 is the quiescent tip-surface separation distance, z the oscillating
tip-surface separation distance, �c the displacement �positive down�
of the cantilever tip, �s the displacement of the sample surface
�positive up�, kcn is the nth mode cantilever stiffness constant �rep-
resented as an nth mode spring�, mc the cantilever mass, ks the
sample stiffness constant �represented as a single spring�, ms the
active sample mass, and F��z0� and F���z0� are the linear and first-
order nonlinear interaction force stiffness constants, respectively.
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From Eq. �3� we write d4Yn /dx4=qn
4Yn. Using this relation

and the dispersion relation between qn and �n, we obtain that
the coefficient of �cn in Eq. �7� is given by EBI�d4Yn /dx4�
=�n

2�BAB. Multiplying Eq. �7� by Ym�x� and integrating from
x=0 to x=L, we obtain

mc�̈cn + �c�̇cn + kcn�cn = Fce
i�ct + F , �8�

where the overdot denotes derivative with respect to time,
mc=�BABL is the total mass of the cantilever, and Fc
= PBLYn�xc�. The tip-sample interaction force F is defined by
F= PTLYn�xT� and the cantilever stiffness constant kcn is de-
fined by kcn=mc�n

2. The damping coefficient �c of the canti-
lever is defined as �c= PdL	Yn�x�dx. Note that, with regard
to the coupled system response, for a given mode n the ef-
fective magnitudes of the driving term Fc and the interaction
force F are dependent via Yn�xc� and Yn�xT�, respectively, on
the positions xc and xT at which the forces are applied. The
damping factor, in contrast, results from a more general de-
pendence on x via the integral of Yn�x� over the range zero to
L. If the excitation force per unit length is a distributed force
over the cantilever surface rather than at a point, then the
resulting calculation for Fc would involve an integral over
Yn�x� as obtained for the damping coefficient.

The interaction force F in Eq. �8� is derived without re-
gard to the cantilever tip-sample surface separation distance
z. Realistically, the magnitude of F is quite dependent on the
separation distance. In particular, various parameters derived
from the force-separation curve play an essential role in the
response of the cantilever to all driving forces. We further
consider that the interaction force not only involves the can-
tilever at the tip position xT but also some elemental volume
of material at the sample surface. To maintain equilibrium, it
is appropriate to view the elemental volume of sample sur-
face as a mass element ms �active mass� that, in addition to
the interaction force, is subjected to a linear restoring force
from material in the remainder of the sample. We assume
that the restoring force per unit displacement of ms in the
direction z toward the cantilever tip is described by a sample
stiffness constant ks. The interaction force F between the
cantilever tip and the mass element ms is in general a non-
linear function of the cantilever tip-sample surface separation
distance z. Since the force F�z� is common to the cantilever
tip and the sample surface element, the cantilever and the
sample form a coupled dynamical system. We thus consider
the cantilever and the sample as independent dynamical sys-
tems coupled by their common interaction force F�z�—a
situation often encountered in the physics literature.29–31

Figure 1 provides a schematic representation of the vari-
ous elements of the coupled system. The dynamical equa-
tions expressing the responses of the cantilever and the
sample surface to all driving and damping forces may be
written for each mode n of the coupled system as

mc�̈cn + �c�̇cn + kcn�cn = F�z� + Fc cos �ct , �9�

ms�̈sn + �s�̇sn + ks�sn = F�z� + Fs cos��st + 	� , �10�

where �cn �positive down� is the cantilever tip displacement
for mode n, �sn �positive up� is the sample surface displace-
ment for mode n, �c is the angular frequency of the cantile-

ver oscillations, �s is the angular frequency of the sample
surface vibrations, �c is the damping coefficient for the can-
tilever, �s is the damping coefficient for the sample surface,
Fc is the magnitude of the cantilever driving force, and Fs is
the magnitude of the sample driving force that we assume
here to result from an incident ultrasonic wave generated at
the opposite surface of the sample. The factor 	 is a phase
contribution resulting from the propagation of the ultrasonic
wave through the sample material.

Equations �9� and �10� are coupled equations representing
the cantilever tip-sample surface dynamics resulting from the
nonlinear interaction forces. The equations govern the canti-
lever and surface displacements �cn and �sn, respectively, at
x=xT. In a realistic AFM measurement of the cantilever re-
sponse to the driving forces, the measurement point is not
generally at x=xT, but at the point x=xL at which the laser
beam of the AFM optical detector system strikes the cantile-
ver surface. The cantilever response at x=xl is found from
Eq. �2� to be

y�xL,t� = �c�t� = �
n=1

�

Yn�xL��cn�t� . �11�

We have shown previously9 that for an acoustic wave
propagating through a sample of thickness a /2 with phase
velocity c and wave number k, containing an embedded fea-
ture of thickness d /2 for which the phase velocity is cd, the
total phase contribution 	 at the sample surface opposite that
of the transducer is given by

	 = − �
 + �
� , �12�

where


 =
ka

2
+ tan−1 sin ka

e�a − cos ka
, �13�

�
 = − 
1

2
+

e�a cos ka − 1

�e�a − cos ka�2 + sin2 ka
� , �14�

and

 = kd
�cd − c�

cd
. �15�

The factor −
 is the contribution to the phase from the fea-
tureless bulk material and −�
 is the contribution from a
phase variation due to the embedded feature.

A typical nonlinear interaction force F�z� is shown sche-
matically in Fig. 2 plotted as a function of cantilever tip-
sample surface separation distance z. The interaction force
results from a number of possible fundamental mechanisms
including electrostatic forces, van der Waals forces, inter-
atomic repulsive �e.g., Born–Mayer� potentials, and Casimir
forces.32–37 It is also influenced by chemical potentials as
well as hydroxyl bonds resulting from atmospheric moisture
accumulation on the cantilever tip and sample surface.38

We note from Fig. 1 that for a given mode n, z=z0
− ��cn+�sn�. We use this relationship in a power series ex-
pansion of F�z� about z0 to obtain
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F�z� = F�z0� + F��z0��z − z0� + 1
2F��z0��z − z0�2 + ¯

= F�z0� − F��z0���cn + �sn�

+ 1
2F��z0���cn + �sn�2 + ¯ , �16�

where the prime denotes derivative with respect to z. Substi-
tution of Eq. �16� into Eqs. �9� and �10� gives

mc�̈cn + �c�̇cn + �kcn + F��z0���cn + F��z0��sn

= F�z0� + Fc cos �ct +
1

2
F��z0���cn + �sn�2 + ¯ , �17�

ms�̈sn + �s�̇sn + �ks + F��z0���sn + F��z0��cn

= F�z0� + Fs cos��st + 	� +
1

2
F��z0���cn + �sn�2 + ¯ .

�18�

It is of interest to note that Eqs. �17� and �18� were ob-
tained assuming that the cantilever is a rectangular beam of
constant cross section. Such a restriction is not necessary,
since the mathematical procedure leading to Eqs. �17� and
�18� is based on the assumption that the general displacement
of the cantilever can be expanded in terms of a set of eigen-
functions that form an orthogonal basis set for the problem.
For the beam cantilever, the eigenfunctions are Yn�x�. For
some other cantilever shape, a different orthogonal basis set
of eigenfunctions would be appropriate. However, the math-
ematical procedure used here would lead again to Eqs. �17�
and �18� with values of the coefficients appropriate to the
different cantilever geometry.

B. Solution to the general dynamical equations

We solve the coupled nonlinear equations �17� and �18�
for the steady-state solution by writing the coupled equations

in matrix form and using an iteration procedure commonly
employed in the physics literature39–41 to solve the matrix
expression. The first iteration involves solving the equations
for which the nonlinear terms are neglected. The second it-
eration is obtained by substituting the first iterative solution
into the nonlinear terms of Eqs. �17� and �18� and solving the
resulting equations. The procedure provides solutions both
for the cantilever tip and the sample surface displacements.
Since the procedure is much too lengthy to reproduce here in
full detail, only the salient features of the procedure leading
to the steady-state solution for the cantilever displacement
�c=�Yn�cn are given. We begin by writing

�cn = �cn + �cn + �cn �19�

and

�sn = �sn + �sn + �sn, �20�

where �cn and �cn represent the first iteration �i.e., linear�
static and oscillatory solutions, respectively, for the nth mode
cantilever displacement, �cn represents the second iteration
�i.e., nonlinear� solution for the nth mode cantilever displace-
ment, and �sn,�sn, and �sn are the corresponding first and
second iteration nth mode displacements for the sample sur-
face.

1. First iterative solution

The first iterative solution is obtained by linearizing Eqs.
�17� and �18�, writing the resulting expression in matrix
form, and solving the matrix expression assuming sinusoidal
driving terms Fce

i�ct and Fse
i�st for the cantilever and sample

surface, respectively. The first iteration yields a static solu-
tion �cn and an oscillatory solution �cn for the cantilever. The
static solution is given by

�cn =
ksF�z0�

kcnks + F��z0��kcn + ks�
. �21�

The first iterative oscillatory solution is given by

�cn = Qcc cos��ct + �cc − �cc� + Qcs cos��st − �ss + 	� ,

�22�

where

�cc = tan−1 �c��skcn + �cks� − �c
3��smc + �cms� + F��z0��c��s + �c�

kcnks + msmc�c
4 − �c

2�mskcn + mcks + �c�s� + F��z0��kcn + ks − ms�c
2 − mc�c

2�
, �23�

�ss = tan−1 �s��skcn + �cks� − �s
3��smc + �cms� + F��z0��s��s + �c�

kcnks + msmc�s
4 − �s

2�mskcn + mcks + �c�s� + F��z0��kcn + ks − ms�s
2 − mc�s

2�
, �24�

Qcc = Fc��ks + F��z0� − ms�c
2�2 + �s

2�c
21/2��kcnks + msmc�c

4 − �c
2�mskcn + mcks + �c�s� + F��z0��kcn + ks − ms�c

2 − mc�c
2��2

+ ��c��skcn + �cks� − �c
3��smc + �cms� + F��z0��c��s + �c��2−1/2, �25�

and

0

Tip-Sample Separation z0 (a.u.)

F
or

ce
(a

.u
.)

(z0)B

(z0)A

FIG. 2. Schematic of interaction force as a function of the sepa-
ration distance between cantilever tip and sample surface.
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Qcs = − FsF��z0���kcnks + msmc�s
4 − �s

2�mskcn + mcks + �c�s� + F��z0��kcn + ks − ms�s
2 − mc�s

2��2

+ ��s��skcn + �cks� − �s
3��smc + �cms� + F��z0��s��s + �c��2−1/2. �26�

2. Second iterative solution

The second iterative solution �cn for each mode n of the
cantilever is considerably more complicated, since it con-
tains not only sum-frequency, difference-frequency, and
harmonic-frequency components, but linear and static com-
ponents as well. The second iterative solution �cn is thus
written as

�cn = �cn,stat + �cn,lin + �cn,dif f + �cn,sum + �cn,harm, �27�

where �cn,stat is a static or “dc” contribution generated by the
nonlinear tip-surface interaction, �cn,lin is a generated linear
oscillatory contribution, �cn,dif f is a generated difference-
frequency contribution resulting from the nonlinear mixing
of the cantilever and sample oscillations, �cn,sum is a gener-
ated sum-frequency contribution resulting from the nonlinear
mixing of the cantilever and sample oscillations, and �cn,harm
are generated harmonic contributions.

Generally, the cantilever responds with decreasing dis-
placement amplitudes as the drive frequency is increased
above the fundamental resonance �for some cantilevers the
second resonance mode has the largest amplitude�, even
when driven at higher modal frequencies. Thus, acoustic
atomic force microscopy methods do not generally utilize
harmonic- or sum-frequency signals. For expediency, such
signals from the second iteration will not be considered here.
Only the static, linear, and difference-frequency terms from
the second iteration solution are relevant to the most com-
monly used A-AFM modalities.

The static contribution generated by the nonlinear interac-
tion force is obtained to be

�cn,stat =
1

4

ksF��z0�
�kcnks + F��z0��kcn + ks��

�2�0
2 + Qcc

2 + Qcs
2 + Qsc

2

+ Qss
2 + 2QccQsc cos��cc − 2�cc� + 2QcsQss cos �ss� ,

�28�

where

�0 =
�kcn + ks�F�z0�

kcnks + F��z0��kcn + ks�
, �29�

Qsc = − FcF��z0���kcnks + msmc�c
4 − �c

2�mskcn + mcks + �c�s�

+ F��z0��kcn + ks − ms�c
2 − mc�c

2��2 + ��c��skcn + �cks�

− �c
3��smc + �cms� + F��z0��c��s + �c��2−1/2, �30�

Qss = Fs��kcn + F��z0� − mc�s
2�2 + �c

2�s
21/2��kcnks + msmc�s

4

− �s
2�mskcn + mcks + �c�s� + F��z0��kcn + ks − ms�s

2

− mc�s
2��2 + ��s��skcn + �cks� − �s

3��smc + �cms�

+ F��z0��s��s + �c��2−1/2, �31�

�cc = tan−1 �s�c

ks + F��z0� − ms�c
2 , �32�

�ss = tan−1 �c�s

kcn + F��z0� − mc�s
2 , �33�

and �cc is given by Eq. �23�, Qcc by Eq. �25�, and Qcs by Eq.
�26�.

The linear oscillatory contribution �cn,lin generated by the
nonlinear interaction force in the second iteration is obtained
to be

�cn,lin =
Dc

Rcc
�0F��z0��Qcc

2 + Qsc
2 + 2QccQsc cos �cc�1/2

�cos��ct − 2�cc + �c + �cc� +
Ds

Rss
�0F��z0��Qss

2 + Qcs
2

+ 2QssQcs cos �ss�1/2 cos��st − 2�ss + �s + �ss + 	� ,

�34�

where

�cc = tan−1 Qcc sin �cc

Qcc cos �cc + Qsc
, �35�

�ss = tan−1 Qss sin �ss

Qss cos �ss + Qcs
, �36�

�c = tan−1 �s�c

ks − ms�c
2 , �37�

�s = tan−1 �s�s

ks − ms�s
2 , �38�

Dc = ��ks − ms�c
2�2 + �s

2�c
2�1/2, �39�

Ds = ��ks − ms�s
2�2 + �s

2�s
2�1/2, �40�

Rss = ��kcnks + msmc�s
4 − �s

2�mskcn + mcks + �c�s�

+ F��z0��kcn + ks − ms�s
2 − mc�s

2��2 + ��s��skcn + �cks�

− �s
3��smc + �cms� + F��z0��s��s + �c��21/2, �41�

and

Rcc = ��kcnks + msmc�c
4 − �c

2�mskcn + mcks + �c�s� + F��z0�

��kcn + ks − ms�c
2 − mc�c

2��2 + ��c��skcn + �cks�

− �c
3��smc + �cms� + F��z0��c��s + �c��21/2. �42�
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The difference-frequency contribution �cn,dif f generated by
the nonlinear interaction force in the second iteration is ob-
tained to be

�cn,dif f = Gn cos���c − �s�t − �cc + �ss + �cs − �cs + � − 	� ,

�43�

where

Gn =
1

2

Dcs

Rcs
F��z0��Qcc

2 Qcs
2 + Qsc

2 Qss
2 + Qcc

2 Qss
2 + Qcs

2 Qsc
2

+ 2QccQcsQscQss cos��cc + �ss� + 2Qcc
2 QcsQss cos �ss

+ 2QccQcs
2 Qsc cos �cc + 2Qsc

2 QssQcs cos �ss

+ 2QccQssQcsQsc cos��cc − �ss�1/2, �44�

Dcs = ��ks − ms��c − �s��2 + �s
2��c − �s�2, �45�

Rcs = �Rcs1
2 + Rcs2

2 , �46�

Rcs1 = kcnks − mskcn��c − �s�2 − mcks��c − �s�2

+ msmc��c − �s�4 − �c�s��c − �s�2 + F��z0��kcn + ks

− ms��c − �s�2 − mc��c − �s�2� , �47�

Rcs2 = ��c − �s���skc + �cks� − ��c − �s�3��smc + �cms�

+ F��z0���c − �s���s + �c� , �48�

�cs = tan−1 Rcs2

Rcs1
, �49�

�cs = tan−1 �s��c − �s�
ks − ms��c − �s�2 , �50�

and

� = tan−1 QccQcs sin �cc − QscQss sin �ss + QccQss sin��cc − �ss�
QccQcs cos �cc + QscQss cos �ss + QccQss cos��cc − �ss� + QcsQsc

. �51�

3. Salient features of the solution set

The present derivation is based on the well-established
fact that the cantilever tip-sample surface interaction force is
a smooth �multiply differentiable�, continuous, nonlinear
function of the tip-surface separation distance as indicated in
Fig. 2. Points on the curve below a certain separation dis-
tance �z0�A in Fig. 2 correspond to a repulsive interaction
force, while points above �z0�A correspond to an attractive
force. The force-separation curve has a minimum at a sepa-
ration distance �z0�B corresponding to the maximum nonlin-
earity of the curve and that point lies in the attractive force
portion of the curve. Cantilever oscillations result in continu-
ous oscillatory changes in the tip-surface separation distance
about the quiescent tip-surface separation distance. Since the
cantilever oscillations are constrained to follow the force-
separation curve, the fractions of the cantilever oscillation
cycle in the repulsive and attractive portions of the force-
separation curve depend on the quiescent tip-surface separa-
tion distance and the amplitude of the oscillations.

The total static solution to the coupled nonlinear equa-
tions �17� and �18� for the cantilever �cn,stat is the sum of the
contribution �cn, given by Eq. �21�, from the first iterative
solution and the contribution �cn,stat, given by Eq. �28�, from
the second iteration as

�cn,stat = �cn + �cn,stat. �52�

The total linear solution �cn,lin to Eqs. �17� and �18� is the
sum of the contribution �cn given by Eq. �22� and the contri-
bution �cn,lin given by Eq. �34� as

�cn,lin = �cn + �cn,lin. �53�

The total difference-frequency solution �cn,dif f to Eqs. �17�
and �18� is simply the contribution �cn,dif f given by Eq. �43�.

It is interesting to note that �cn and the component �0 in
�cn,stat do not explicitly involve the cantilever drive ampli-
tude Fc and the sample surface drive amplitude Fs, although
other terms involving the Q factors, given by Eqs. �25�, �26�,
�30�, and �31�, in �cn,stat do involve these drive amplitudes.
This means that only the contributions stemming from the
nonlinearity in the cantilever tip-sample surface interaction
force respond directly to variations in the drive amplitudes
and, in particular, to the physical features of the material
giving rise to variations in Fs. Furthermore, the magnitudes
of all second iteration �i.e., nonlinear� contributions, �cn,stat,
�cn,lin, and �cn,dif f, are strongly dependent on the cantilever
tip-sample surface quiescent separation z0, since the value of
the nonlinear stiffness constant F��z0� that dominates these
contributions is highly sensitive to z0. Indeed, F��z0� attains a
maximum value near the bottom of the force-separation
curve of Fig. 2.

For large deflections of the cantilever that may occur for
sufficiently hard contact, large bending moments that pro-
duce frequency shifts in the cantilever resonance frequencies
quite apart from those introduced by the interaction force
stiffness constant F��z0� may be introduced. For the assess-
ment of F��z0� near the bottom of the force-separation curve
where F��z0� is maximum �maximum nonlinearity regime
�MNR�� and F��z0� is relatively small, the bending moments
are generally negligible and a reasonable estimate of F��z0�
can be obtained directly from differences in the engaged and
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nonengaged resonance �free space� frequencies of the canti-
lever.

For large driving force amplitudes, nonlinear modes of
oscillation may be generated in the cantilever. Nonlinear tip-
surface interactions are also known to excite nonlinear �an-
harmonic� cantilever modes.23,26 It is assumed that the non-
linear modes can be described in terms of a set of orthogonal
eigenfunctions Zn�x� �generally different from but also or-
thogonal to Yn�x�� describing the nonlinearities of the un-
forced cantilever. In such case, the nonlinear vibrational
characteristics of the cantilever may also be included in the
general cantilever response in a manner similar to that given
above for the linear modes. The nonlinear modes are thus
formally included in the present model by extending the set
of eigenvalues kcn, hence eigenvectors spanning the function
space, to allow for nonlinear eigenmodes. This requires no
additional formal analysis in the present model. All eigenval-
ues �including those from nonlinear modes� are ascertained
in the present model from experimental measurements.

We point out that for AM-AFM operation the cantilever
oscillations are known to be bistable with the particular
mode of oscillation being determined by the initial condi-
tions that includes the tip-surface separation distance.26 Un-
less some extraneous perturbation changes the mode of os-
cillation, the cantilever continues to oscillate in a given
bistable mode for a given set of initial conditions. For large
oscillation amplitudes, the bistability coalesces to a single
stable mode.26 In the present model, the bistable mode of
cantilever oscillation is set by the value of the “effective”
sample stiffness constant ks that has one of the two values—
one associated with the repulsive portion of the force-
separation curve and one associated with the attractive por-
tion �see Sec. IV A 3�. The value of the effective sample
stiffness constant, hence cantilever oscillation mode, must be
determined experimentally in the present model. The present
model thus accounts phenomenologically for the more com-
plex oscillations in the intermittent contact mode as well as
all other modes of operation considered in Sec. III.

III. APPLICATION OF MODEL TO VARIOUS ACOUSTIC
ATOMIC FORCE MICROSCOPE TECHNIQUES

The equations derived in Sec. II describing the cantilever
response resulting from the interaction with the nonlinear
cantilever tip-sample surface forces may be used to quantify
the signal generation and contrast for a number of A-AFM
modalities. We shall consider the most frequently used
A-AFM modalities including resonant difference-frequency
atomic force ultrasonic microscopy,9 heterodyne force
microscopy,7,8 ultrasonic force microscopy,5,6 atomic force
acoustic microscopy,3,4 force modulation microscopy,2 and
the most commonly used amplitude modulation—atomic
force microscopy �intermittent contact or tapping mode�. We
note in applying the above equations that for the range of
frequencies generally employed in A-AFM the contribution
from terms involving the mass of the sample element ms is
small compared to the remaining terms and may to an excel-
lent approximation be neglected.

A. Resonant difference-frequency atomic force ultrasonic
microscopy and heterodyne force microscopy

RDF-AFUM9 employs an ultrasonic wave launched from
the bottom of a sample, while the AFM cantilever tip en-
gages the sample top surface. The cantilever is driven at a
frequency differing from the ultrasonic frequency by one of
the resonance frequencies of the engaged cantilever. It is
important to note that at high drive amplitudes of the ultra-
sonic wave or engaged cantilever �or both� the resonance
frequency generating the difference-frequency signal may
correspond to one of the nonlinear oscillation modes of the
cantilever. The engaged cantilever resonance frequency for
the �linear or nonlinear� mode n, neglecting dissipation, is
given by mc�cn

2 =kcn+F��z0�kcn�ks+F��z0��−1, where kcn is the
cantilever stiffness constant corresponding to the nth �linear
or nonlinear� nonengaged �free space� resonance mode.
Since F��z0� may be positive or negative, depending on the
shape of the force-separation curve, at the separation dis-
tance z0 corresponding to maximum F��z0�, the resonance
frequency of the cantilever when engaged at this value of z0
may be larger or smaller, respectively, than the resonance
frequency when not engaged. The nonlinear mixing of the
oscillating cantilever and the ultrasonic wave in the region
defined by the cantilever tip-sample surface interaction force
generates difference-frequency oscillations at the engaged
cantilever resonance.

Variations in the amplitude and phase of the bulk wave
due to the presence of subsurface nano/microstructures as
well as variations in near-surface material parameters affect
the amplitude and phase of the difference-frequency signal.
These variations are used to create spatial mappings gener-
ated by subsurface and near-surface structures. HFM7,8 also
utilizes difference-frequency signals generated by the nonlin-
ear mixing in the cantilever tip-sample surface interaction
region. In this technique, no special advantage is taken of
cantilever resonances and the difference-frequency utilized is
generally well below that of the cantilever resonance.

In both RDF-AFUM and HFM, the cantilever difference-
frequency response is obtained from the nonlinear mixing in
the region defined by the tip-surface interaction force. The
interaction force varies nonlinearly with the tip-surface sepa-
ration distance. The deflection of the cantilever obtained in
calibration plots is related to this force; for small slopes of
the deflection versus separation distance, the interaction
force and cantilever deflection curves are approximately re-
lated via a constant of proportionality. The maximum
difference-frequency signal amplitude occurs when the qui-
escent deflection of the cantilever is near the bottom of the
force curve. There the maximum change in the slope of the
force versus separation curve �hence maximum interaction
force nonlinearity� occurs. We shall call this region of opera-
tion the maximum nonlinearity regime.

The dominant term or terms for the cantilever difference-
frequency displacement in Eqs. �11� and �19� depend on the
values of kcn for the free modes of cantilever oscillation,
�c−�s, and the value of F��z0� obtained at the separation
distance z0= �z0�B at which the maximum difference-
frequency signal occurs. We designate the nonengaged linear
or nonlinear mode n for which the difference-frequency en-
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gaged resonance occurs as n= p. The dominant difference-
frequency component in Eqs. �11� and �19� is thus �cp
=�cp,dif f =�cp,dif f and is given by Eq. �43� for n= p as

�cp,dif f = Gp cos���c − �s�t − �cc + �ss + �cs − �cs + � − 	� ,

�54�

where Gp, given by Eq. �44�, and the phase terms in Eq. �54�
are obtained from Eqs. �23�–�26�, �29�–�33�, and �45�–�51�.
It is important to point out in considering these equations
that while the difference-frequency resonance frequency
��c−�s� in RDF-AFUM is usually set to correspond to the
lowest resonance mode of the engaged cantilever �although a
higher modal resonance could be used�, the cantilever driv-
ing frequency �c and ultrasonic frequency �s generally are
set near �but not necessary equal to� higher resonance modes
n=q and n=r, respectively, of the engaged cantilever. For
relatively small difference frequencies, it may occur that q
=r. Thus, the cantilever stiffness constant kcn is appropriately
given as kcp when involving the difference-frequency terms
in Eqs. �23�–�26�, �29�–�33�, and �45�–�51�, the stiffness con-
stant kcq when involving the cantilever drive frequency �c at
or near the frequency of the qth cantilever resonance mode,
and kcr when involving the ultrasonic frequency �s at or near
the frequency of the rth cantilever resonance mode. If �c and
�s are not set at or near a resonance modal frequency of the
engaged cantilever, then it may be necessary to include more

than one term in Eqs. �11� and �19� corresponding to various
values of q and r.

It is seen from Eq. �44� that for a given value of ��c
−�s� the maximum value of �cp,dif f ideally occurs for a value
of z0 such that F��z0� is maximized. It is important to note,
however, that F��z0�, while relatively small in magnitude
compared to that of the hard contact regime, is generally not
equal to zero at that point. Strictly, the values of F��z0� and
F��z0� for a given z0 are each dependent on the exact func-
tional form of F�z0�. A functional form for F�z0� sufficiently
quantitative to quantify F��z0� and F��z0� is not typically
available. However, experimental curves for F�z0� can be
obtained and compared to the experimental curves of �cp,dif f
plotted as a function of z0. An examination of Eq. �44� sug-
gests that a more exact approach to maximizing �cp,dif f would
be not only to vary z0 but also to vary slightly the difference
frequency from the free space resonance condition until an
optimal setting for both z0 and the difference frequency is
achieved.

The equations for Gp and the phase terms in Eq. �54� may
be obtained from Eqs. �23�–�26�, �29�–�33�, and �45�–�51�,
where the terms involving the sample mass ms may be
dropped to an excellent approximation. For ultrasonic wave
and cantilever drive frequencies in the low megahertz range,
we obtain, setting ��= ��c−�s�, that

�cs � tan−1 �s����
ks

, �55�

�cs � tan−1 ��cks + �skcp����� − �smc����3 + F��z0���c + �s�����
kcpks − �mcks + �c�s�����2 + F��z0��kcp + ks − mc����2�

, �56�

�cc � tan−1 ��cks + �skcq��c − �smc�c
3 + F��z0���c + �s��c

kcqks − �mcks + �c�s��c
2 + F��z0��kcq + ks − mc�c

2�
,

�57�

�ss � tan−1 ��cks + �skcr��s − �smc�s
3 + F��z0���c + �s��s

kcrks − �mcks + �c�s��s
2 + F��z0��kcr + ks − mc�s

2�
,

�58�

and Gp is given by Eq. �44� where

Dcs

Rcs
� ��ks

2 + �s
2����2�1/2�kcpks − ����2�mcks + �c�s� + F��z0�

��kcp + ks − mc����2�2 + �������skcp + �cks�

− ����3�smc + F��z0��c��s + �c��2�−1/2, �59�

Qcc � Fc��ks + F��z0��2 + �s
2�c

21/2��kcqks − �c
2�mcks + �c�s�

+ F��z0��kcq + ks − mc�c
2��2 + ��c��skcq + �cks�

− �c
3�smc + F��z0��c��s + �c��2−1/2, �60�

Qss � Fs��ks + F��z0��2 + �s
2�s

21/2��kcrks − �s
2�mcks + �c�s�

+ F��z0��kcr + ks − mc�s
2��2 + ��s��skcr + �cks�

− �s
3�smc + F��z0��c��s + �c��2−1/2, �61�

Qcs � − FsF��z0���kcrks − �s
2�mcks + �c�s�

+ F��z0��kcr + ks − mc�s
2��2 + ��s��skcr + �cks�

− �s
3�smc + F��z0��s��s + �c��2−1/2, �62�

and

Qsc � − FcF��z0���kcqks − �c
2�mcks + �c�s�

+ F��z0��kcq + ks − mc�c
2��2 + ��c��skcq + �cks�

− �c
3�smc + F��z0��c��s + �c��2−1/2. �63�

The phase term � in Eq. �54� is given by Eq. �51� and is
quite complicated. However, advantage can be taken of the
fact that ks is generally large compared to other terms in the
numerators of Qcc, Qss, Qcs, and Qsc; the denominators of
these terms are very roughly all equal. Hence, the magni-
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tudes of Qcc and Qss are usually large compared to those of
Qcs and Qsc. The terms involving the QccQss thus dominate in
Eq. �51� and we may approximate � as

� � �cc − �ss = tan−1 �s�c

ks + F��z0�
− tan−1 �c�s

kcr + F��z0� − mc�s
2 ,

�64�

where �cc and �ss are obtained from Eqs. �32� and �33�,
respectively. To the same extent that � may be approximated
by Eq. �64�, we may approximate Gp as

Gp �
F��z0�

2

Dcs

Rcs
QccQss. �65�

It is seen from Eqs. �54� and �65� that both the amplitude
and phase of the difference-frequency signal �cp,dif f are de-
pendent on Fs, Fc, ks, kc, �s, and �c in addition to �c and �s.
Since from the Hertzian theory ks is dependent on the Young
modulus of the material, the dependence of �cp,dif f on �s and
ks means that scans of the sample contain information about
the elastic stiffness of the sample as well as information
about surface damping, hence, the viscoelastic properties of
the sample surface. Subsurface features of the sample are
obtained via the dependence of the difference-frequency sig-
nal amplitude on Fs and via the dependence of the
difference-frequency phase signal on 	, since both Fs and 	
vary as the result of ultrasonic wave scattering from subsur-
face features. The signal response for HFM is generally
given by the same equations as those for RDF-AFUM except
that a single mode p may not necessarily dominate the sig-
nal, if the difference frequency is above the lowest resonance
frequency of the engaged cantilever. A sum of the largest
modal contributions is thus calculated for HFM to obtain the
signal output. However, the difference frequency in HFM
generally is set well below the lowest modal frequency of the
engaged cantilever. In this case, the appropriate equations are
identical to those of RDF-AFUM with p equal to the lowest
modal frequency of the engaged cantilever.

B. Ultrasonic force microscopy

In ultrasonic force microscopy5,6 �UFM�, the cantilever
drive frequency �c and drive amplitude Fc are zero; the sur-
face drive amplitude Fs and the drive frequency �s of the
wave generated by the transducer at the bottom of the sample
are nonzero. UFM can be operated at very large frequencies,
even in the gigahertz range. Although the vibrational re-
sponse of the cantilever is certainly quite small at such fre-
quencies, operation at a tip-surface separation distance z0
corresponding to the nonlinear regime of the force-separation
curve, where F��z0� is maximum, will produce a detectable
static or dc signal from the interaction nonlinearity. The gen-
erated static signal is called the ultrasonic force.7

The nonlinear force-separation interaction results in a
static displacement of the cantilever �c,stat given as

�c,stat = �
p

Yp�xL��cp,stat + �
m

Zm�xL��cm,stat, �66�

where �cn,stat �n= p ,m� is the contribution from mode n �lin-
ear or nonlinear� given by

�cn,stat = �cn + �cn,stat �67�

and �cn and �cn,stat are given by Eqs. �21� and �28�, respec-
tively. The terms in Eq. �28� involving Qcc and Qsc are zero,
since Fc is zero for UFM. We assume operation of the UFM
in the nonlinear regime of the force curve where F��z0� is
maximized and F��z0� is relatively small. We approximate
the nonzero terms Qss and Qcs in Eq. �28� by Eqs. �61� and
�62�, where kcq is replaced with kcn. We obtain

�cn,stat =
ks

kcnks + F��z0��kcn + ks�
�F�z0� +

F��z0�
4

�2�0
2 + Qcs

2

+ Qss
2 + 2QcsQss cos �ss�� , �68�

where �0 is given by Eq. �29� and �ss is given by Eq. �33�. To
the extent that Qss is much larger than Qcs because of the
occurrence of ks and �s�s in the numerator of Qss, Eq. �68�
may be simplified by dropping the terms involving Qcs.

Equation �66� admits all cantilever modes as contributors
to the magnitude of the UFM signal. However, Eq. �68�
shows that the contribution to �c,stat for a given mode n is
dependent on kcn such that for both the ultrasonic and
nonoscillatory contributions to Eq. �68� an increase in kcn
results in a decrease in the magnitude of the contributions for
that mode. Since kcn increases in magnitude with increasing
n, the contribution to �c,stat from a given mode generally
decreases with increasing mode number for both the ultra-
sonic and nonoscillatory components of �cn,stat, although the
exact relationship is highly dependent on the values of �c, �s,
ks, mc, and �s that appear in Eq. �68�.

The dominant contributions from the second term on the
right-hand side of Eq. �68� for a given ultrasonic drive fre-
quency �s occur for those cantilever modes such that mc�s

2

has a value near mc�cn
2 =kcn+F��z0�kcn�ks+F��z0��−1. In con-

trast, the first term on the right-hand side of Eq. �68� and the
component of the second term involving �0 are independent
of frequency and thus make the major contributions when the
ultrasonic drive frequencies are in the gigahertz range. These
terms predict that a static signal exists even without the pres-
ence of an ultrasonic wave propagating through the sample
and results directly from the interaction of the cantilever with
the sample surface via the interaction force.

It is seen from Eq. �68� that �cn,stat is dependent on both
Fs and ks. This means that scans of the sample contain infor-
mation about the elastic stiffness of the sample through ks as
well as information about subsurface features via the depen-
dence of the amplitude on Fs. The dependence on �s means
that UFM is sensitive to the viscous properties at the sample
surface as well.

C. Atomic force acoustic microscopy and force
modulation microscopy

Both for AFAM3,4 and FMM,2 the cantilever drive ampli-
tude and frequency are zero. As in UFM, the surface drive
amplitude and the frequency �s are nonzero. However, un-
like UFM, the surface drive frequency is limited to a range of
frequencies that produces measurable displacement ampli-
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tudes of cantilever oscillation. In contrast to UFM, the tip-
surface interaction distance is set to operate in hard contact,
the “linear detection regime” of operation, where z0 is small,
F�z0� is repulsive, F��z0� is large and negative, and F��z0� is
negligible. In the linear detection regime, no difference fre-
quency or harmonically generated signal is detectable, since
for hard contact F��z0� is effectively zero. The cantilever
displacement amplitude �cn,lin corresponding to the nth mode
is then obtained from Eq. �53� as �cn,lin=�cn+�cn,lin. The con-
tribution �cn,lin resulting from the nonlinearity is given by Eq.
�34� and is seen to be zero, since F��z0� is effectively zero in
the linear detection regime. The remaining contribution �cn
to the cantilever displacement amplitude is given by Eq.
�22�. We may approximate �cn, hence �cn,lin, in the low
megahertz range of frequencies as

�cn,lin � �cn � Qcs cos��st − �ss + 	� , �69�

where Qcs is given by Eq. �62�, �ss by Eq. �58�, and 	 by Eq.
�12�.

Note that both Qcs and �ss depend on the magnitude of
F��z0�. For sufficiently hard contact, F��z0� becomes very
large and negative and may dominate the terms in Eq. �69�.
Under such conditions, we obtain

Qcs � − Fs��kcn + ks − mc�s
2�2 + ��c + �s�2�s

2−1/2 �70�

and

�ss � tan−1 ��c + �s��s

kcn + ks − mc�s
2 . �71�

Equations �69�–�71� show that both the amplitude and
phase of the cantilever oscillations depend on kcn, ks, �c, �s,
and �s. For AFAM driving frequencies �s near a cantilever
resonance mode n, determined by mc�cn

2 =kcn+F��z0�kcn�ks
+F��z0��−1, the signal amplitude is large and the cantilever
displacement is dominated by that mode. For FMM, �s is
much smaller than �kc1 /mc, the fundamental cantilever free
resonance frequency.

D. Amplitude modulation–atomic force microscopy

The AM-AFM mode �also called intermittent contact
mode or tapping mode� is a standard feature on many atomic
force microscopes for which the cantilever is driven in oscil-
lation, but no surface oscillations resulting from bulk ultra-
sonic waves are generated �i.e., Fs and �s are zero�. Thus,
AM-AFM cannot be used to image subsurface features, but
interesting surface properties and features can be imaged.
Since AM-AFM can be used in both hard contact and maxi-
mum nonlinearity regimes �i.e., the linear and maximally
nonlinear regimes, respectively, of the force-separation
curve�, the cantilever displacement �cn,lin for mode n is given
most generally as

�cn.lin = �cn + �cn,lin, �72�

where �cn is given by Eq. �22� with the term involving Qcs
set equal to zero and �cn,lin is given by Eq. �34� with all terms
involving Qcs and Qss set equal to zero.

For the maximum nonlinearity regime, the expression for
�cn,lin is

�cn,lin = H cos��ct − �cc + �� , �73�

where

� = tan−1 sin��c + �cc − �cc − �cc�
cos��c + �cc − �cc − �cc� + �Qcc/W�

, �74�

W =
Dc

Rcc
�0F��z0��Qcc

2 + Qsc
2 + 2QccQsc cos �cc�1/2, �75�

and

H = �Qcc
2 + W2 + 2QccW cos��c + �cc − �cc − �cc��1/2,

�76�

where Qcc is given by Eq. �60�, Qsc by Eq. �63�, �cc by Eq.
�57�, �cc by Eq. �35�, �0 by Eq. �29�; and acc, �c, Dc, and Rcc,
by Eqs. �32�, �37�, �39�, and �42�, respectively, with the terms
involving ms set equal to zero.

The complexity of the cantilever response �cn,lin is greatly
reduced for the hard contact regime, where F��z0� is negligi-
bly small and F��z0� is very large and negative. For suffi-
ciently hard contact, � and �cc are approximately zero and
we obtain

�cn,lin � Qcc cos��ct − �cc� , �77�

where

Qcc = Fc��kcn + ks − mc�c
2�2 + ��c + �s�2�c

2�−1/2 �78�

and

�cc = tan−1 ��c + �s��c

kcn + ks − mc�c
2 . �79�

The dependence of �cn,lin on the material damping coeffi-
cient �s and the sample stiffness constant ks, both for the
hard contact and the maximum nonlinearity regimes, means
that AM-AFM can be used to assess the viscoelastic proper-
ties of the material irrespective of the regime of operation.

IV. IMAGE CONTRAST

All the above equations, except for Eqs. �12� and �14�,
were derived for constant values of the cantilever and mate-
rial parameters. If, in an area scan of the sample, the param-
eters remain constant from point to point, the image gener-
ated from the scan would be flat and featureless. We consider
here that the sample stiffness constant ks may vary from
point to point on the sample surface. Since ks is dependent on
the Young modulus E, this means that E also varies from
point to point. We assume that the value of the sample stiff-
ness constant ks� at a given point on the surface differs from
the value ks at another position as ks�=ks+�ks. For any func-
tion f�ks� having a functional dependence on ks, a variation
in ks generates a variation in f�ks� given by �f
= �df /dks�0�ks, where the subscripted zero indicates evalua-
tion at ks. A similar expression can be obtained for the ma-
terial damping parameter �s, but we shall not consider such
variations here.

A variation in ks produces a variation both in the ampli-
tude and phase of the signal generated by the cantilever tip-
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sample surface interactions. The variations in amplitude and
phase can be used to generate amplitude and phase images,
respectively, in a surface scan of the sample. We first con-
sider images generated by the phase variations in the signal.

A. Phase-generated images

The phase factors involved in RDF-AFUM and HFM are
given from Eqs. �54�, �12�, and �13� to be �cc, �ss, �cs, �cs,
�, and 
; the phase factors involved in AFAM and FMM are,
from Eq. �69�, �ss and 
; and the phase factors involved in
the AM-AFM mode are, from Eq. �73�, �cc and �. Each of
these phase factors is dependent on ks and the variations in
the phase factors resulting from variations in ks are respon-
sible for image generation when using phase detection of the
A-AFM signal. The exact dependence of the phase on ks,
however, is different for hard contact and maximum nonlin-
earity regimes.

1. Maximum nonlinearity regime

For the maximum nonlinearity regime, the appropriate
variations in the phase factors relevant to HFM and RDF-
AFUM are

��cs = �d�cs

dks
�

0
�ks = −

�s��

�ks + F��z0��2 + �s
2����2�ks,

�80�

��cc = −
Acc

Bcc
�ks, �81�

where

Acc = ��skcq
2 + 2F��z0��skcq + F��z0�2��c + �s���c

+ ��c
2�s − 2�smc�kcq + F��z0���c

3 + mc
2�s�c

5 �82�

and

Bcc = ���cks + �skcq + F��z0���c + �s���c − �smc�c
32

+ ��kcq − mc�c
2 + F��z0��ks + F��z0��kcq − mc�c

2�

− �c�s�c
22, �83�

��ss = −
Ass

Bss
�ks, �84�

where

Ass = ��skcr
2 + 2F��z0��skcr + F��z0�2��c + �s���s

+ ��c
2�s − 2�smc�kcr + F��z0���s

3 + mc
2�s�s

5 �85�

and

Bss = ���cks + �skcr + F��z0���c + �s���s − �smc�s
32

+ ��kcr − mc�s
2 + F��z0��ks + F��z0��kcr − mc�s

2�

− �c�s�s
22, �86�

and

��cs = −
Acs

Bcs
�ks, �87�

where

Acs = ��skcp
2 + 2F��z0��skcp + F��z0�2��c + �s������

+ ��c
2�s − 2�smc�kcp + F��z0������3 + mc

2�s����5

�88�

and

Bcs = ���cks + �skcp + F��z0���c + �s������ − �smc����32

+ ��kcp − mc����2 + F��z0��ks + F��z0��kcp − mc����2�

− �c�s����22. �89�

To the extent that �=�cc−�ss, as given by Eq. �60�, we
may write

�� = ��cc = −
�s�c

�ks + F��z0��2 + �s
2�c

2�ks. �90�

The phase term �
 is given by Eqs. �14� and �15�.
The appropriate variations in the phase factors relevant to

the AM-AFM maximum nonlinearity regime are ��cc, ��cc,
and ��. The factor �� is obtained from Eq. �74� as

�� =
1 + �Qcc/W�cos��c + �cc − �cc − �cc�

�cos��c + �cc − �cc − �cc� + �Qcc/W��2 + sin2��c + �cc − �cc − �cc�
���c + ��cc − ��cc − ��cc� , �91�

where

��c = −
�s�c

ks
2 + �s

2�c
2�ks, �92�

��cc is given by Eq. �81�, and ��cc is obtained from Eq.
�35�. To the extent that Qsc is much smaller than Qcc, we get

from Eq. �35� that ��cc=��cc, where ��cc is given by Eq.
�90�.

2. Hard contact regime

For the hard contact regime where F��z0� is very large and
negative, the relevant phase variations are obtained from
Eqs. �71� and �79� as
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��cc = −
��c + �s��c

�ks + kcq − mc�c
2�2 + ��c + �s�2�c

2�ks, �93�

and

��ss = −
��c + �s��s

�ks + kcr − mc�s
2�2 + ��c + �s�2�s

2�ks. �94�

Equations �93� and �94� are appropriate to AFAM and
FMM modalities as well as to the AM-AFM hard contact
mode of A-AFM operation. As a word of caution, the extent
to which the hard contact equations apply depends on how
well the approximation F��z0�→−� holds. In those cases
where such an assumption is suspect, all terms in the equa-
tions for a given modality should be used.

3. Dependence on the Young modulus

Hertzian contact theory provides that the sample stiffness
constant ks is related to the Young modulus E of the sample
as14

ks = 2rc�1 − �T
2

ET
+

1 − �2

E
�−1

, �95�

where � is the Poisson ratio of the sample material, ET and
�T are the Young modulus and Poisson ratio, respectively, of
the cantilever tip, and rc is the cantilever tip-sample surface
contact radius. Hence,

�ks =
2rc�1 − �2�

E2 �1 − �T
2

ET
+

1 − �2

E
�−2

,

�E =
ks

E
�1 − �T

2

ET
+

1 − �2

E
�−1�E

E
. �96�

Strictly, Eq. �95� was derived for the case of repulsive
interaction forces leading to a concave elastic deformation of
a flat sample surface from a contacting hard spherical object.
However, we consider here that to a reasonable approxima-
tion Eqs. �95� and �96� also hold for attractive interactive
forces providing that the elastic deformation of the sample
surface is viewed as a convex deformation �asperity� sub-
tending an effective contact radius rc with the cantilever tip
that is appropriately different in magnitude from that of the
repulsive force case. As pointed out in Sec. II B 3 for AM-
AFM operation, the cantilever oscillations are known to be
bistable with the particular mode of oscillation being deter-
mined by the initial conditions that includes the tip-surface
separation distance. In the present model, the bistable mode
of cantilever oscillation is set by the value of the effective
sample stiffness constant ks corresponding either to the re-
pulsive region or attractive region of the force-separation
curve.

Equation �96� can be used with Eqs. �80�–�94� to ascertain
the fractional variation in the Young modulus �E /E from
measurements of the phase variation in the signal from an
appropriate A-AFM modality. For the case where ET�E,
e.g., for polymeric or soft biological materials, Eq. �95� re-
duces to ks=2rcE and Eq. �96� reduces to �ks=ks��E /E�.

B. Amplitude-generated images

1. Resonant difference-frequency atomic force ultrasonic
microscopy and heterodyne force microscopy

The amplitude Gp of the RDF-AFUM signal is given by
Eq. �65� to a good approximation for most applications. The
fractional variation in the signal amplitude �Gp /Gp resulting
from variations in the sample stiffness constant ks, hence
Young modulus E, makes a considerable contribution to the
image contrast when operating in the amplitude detection
modality. The fractional variation in amplitude is

�Gp

Gp
=

1

Gp
� �Gp

�ks
�

0
�ks

= � 1

Qss
� �Qss

�ks
�

0
+

1

Qcc
� �Qcc

�ks
�

0

+
Rcs

Dcs

 �

�ks
�Dcs

Rcs
��

0
��ks, �97�

where

1

Qss
� �Qss

�ks
�

0
=

ks + F��z0�
��ks + F��z0��2 + css

2 1/2

−
�assks + bss�ass + �cssks + dss�css

�assks + bss�2 + �cssks + dss�2 , �98�

ass = kcr − mc�s
2 + F��z0� , �99�

bss = F��z0��kcr − mc�s
2� − �c�s�s

2, �100�

css = �c�s, �101�

dss = �skcr�s − mc�s�s
3 + F��z0���c + �s�; �102�

1

Qcc
� �Qcc

�ks
�

0
=

ks + F��z0�
��ks + F��z0��2 + ccc

2 1/2

−
�accks + bcc�acc + �cccks + dcc�ccc

�accks + bcc�2 + �cccks + dcc�2 ,

�103�

acc = kcq − mc�c
2 + F��z0� , �104�

bcc = F��z0��kcq − mc�c
2� − �c�s�c

2, �105�

ccc = �c�c, �106�

dcc = �skcq�c − mc�s�c
3 + F��z0���c + �s�; �107�

and

Rcs

Dcs

 �

�ks
�Dcs

Rcs
��

0

=
ks

�ks
2 + ccs

2 �1/2 −
�acsks + bcs�ass + �ccsks + dcs�ccs

�acsks + bcs�2 + �ccsks + dcs�2 ,

�108�
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bcs = kcp − mc����2 + F��z0� , �109�

ccs = F��z0��kcp − mc����2� − �c�s����2, �110�

dcs = �c���� , �111�

hcs = �skcp���� − mc�s����3 + F��z0���c + �s� . �112�

It is apparent from Eqs. �97�–�112� that, although the
RDF-AFUM signal amplitude per se is highly dependent on
F��z0� and on the cantilever and ultrasonic drive amplitudes
Fc and Fs, respectively, the magnitude of the fractional varia-
tion �Gp /Gp in the RDF-AFUM signal amplitude resulting
from variations in the sample spring constant ks is indepen-
dent of Fc, Fs, and F��z0�. However, �Gp /Gp is dependent
upon the values of the cantilever stiffness constant kcn where
n= p, q, and r, as discussed in Sec. III A. The values of kcn in
turn are highly dependent on the choice of cantilever and the
frequency chosen to drive the cantilever into resonance. Al-
though �Gp /Gp makes a considerable contribution to image
contrast, it is not the only contribution. As with all A-AFM
techniques, the resolution of the image digitizer, the dynamic
range, and signal-to-noise features of the electronic compo-
nents, the sharpness of the cantilever tip and the bonding of
the ultrasonic transducer among other factors also contribute
to the image contrast. The contrast for RDF-AFUM, how-
ever, cannot generally exceed that rendered by �Gp /Gp. The
magnitude of the signal variation for HFM is given by the
same equation as for RDF-AFUM except that a single mode
may not necessarily dominate the signal. A sum of the largest
modal contributions may be appropriate to calculate for
HFM the cantilever displacement.

2. Ultrasonic force microscopy

The amplitude of the UFM signal is given by Eqs.
�66�–�68�. Assuming that Qcs is small compared to Qss and
�0, hence negligible in the calculations, we obtain the frac-
tional variation in the cantilever displacement amplitude for
the nth mode to be

��cn,stat

�cn,stat
= � F��z0�kcn

ks�kcnks + F��z0��kcn + ks��

+

F��z0���0
��0

�ks
+

1

2
Qss

�Qss

�ks
�

F�z0� +
F��z0�

4
�2�0

2 + Qss
2 � �

0

�ks,

�113�

where Qss is given by Eq. �61� with q=n, ��Qss /�ks�0 by Eq.
�98� with q=n, �0 by Eq. �29�, and ���0 /�ks�0 by

� ��0

�ks
�

0
= −

F�z0�kcn
2

kcnks + F��z0��kcn + ks�
. �114�

3. Atomic force microscopy and force modulation microscopy

For AFAM and FMM, the cantilever displacement ampli-
tude is from Eq. �69� dependent on Qcs, where Qcs is given
by Eq. �62�. For hard contact, Qcs is given by Eq. �70� and
the fractional change in the signal amplitude for mode n is
obtained to be

�Qcs

Qcs
= −

kcn + ks − mc�s
2

�kcn + ks − mc�s
2� + ��c + �s�2�s

2�ks. �115�

The availability and dominance of modes are discussed in
Sec. III C.

4. Amplitude modulation–atomic force microscopy

For the AM-AFM hard contact modality, the amplitude is
dependent on Qcc, which for hard contact is given by Eq.
�78�. The fractional change in the amplitude for a given
mode n is obtained as

�Qcc

Qcc
= −

kcn + ks − mc�c
2

�kcn + ks − mc�c
2� + ��c + �s�2�c

2�ks. �116�

It is interesting to note that the variation in amplitude for
AM-AFM hard contact is identical to that of AFAM and
FMM hard contact except that in AM-AFM the drive fre-
quency is �c whereas in AFAM and FMM the drive fre-
quency is �s.

C. Summary of acoustic atomic force microscopy modalities
and relevant equations

The large number of A-AFM modalities and equations
presented in the present work begs that some attempt be
made to expedite navigation to relevant equations obtained
in the text for a particular A-AFM modality. Such an attempt
that gives a summary of equations for signal generation, im-
age phase contrast, and image amplitude contrast relevant to
a given A-AFM modality is provided in Table I. Note that for
image contrast, different sets of equations are given for the
MNR and the hard contrast regime �HCR� of operations. It is
advised before using a given equation or set of equations that
all sections in the text regarding the chosen A-AFM modality
be read to assure that the equations are applied in the proper
context.

V. COMPARATIVE MEASUREMENTS USING RESONANT
DIFFERENCE-FREQUENCY ATOMIC FORCE

ULTRASONIC MICROSCOPY AND AMPLITUDE
MODULATION–ATOMIC FORCE MICROSCOPY

MAXIMUM NONLINEARITY MODALITIES

In order to test the validity of the present model, compara-
tive measurements of the maximum fractional variation of
the Young modulus �E /E in a film of LaRC™-CP2 polyim-
ide polymer were obtained using the RDF-AFUM and AM-
AFM maximum nonlinearity modalities. The two modalities
represent opposite extremes in measurement complexity,
both in instrumentation and in the analytical expressions
used to calculate �E /E. The polyimide film was 12.7 �m
thick and contained a monolayer of gold nanoparticles
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10–15 nm in diameter embedded 7 �m beneath the sample
surface. A common scan area of the sample surface was used
in obtaining the images. Phase-generated images were ob-
tained in each case. The values of the relevant material and
cantilever parameters are9 ks=96.1 N m−1, kc1=14 N m−1,
�s=4.8�10−5 kg s−1, mc=3.9�10−12 kg, E=2.4 GPa,
F��z0�=−53 N m−1, �c /2�=2.1 MHz, �s /2�=1.8 MHz,
and �� /2�=0.3 MHz.

The variation in the RDF-AFUM phase signal is given
from Eq. �54� as ���ss−��cc+��cs−��cs+��+�
�. The
maximum phase variation measured in the RDF-AFUM area
scan was 13.2°. From Eqs. �14�, �15�, and �80�–�90�, we
calculate a value of approximately 24% for the maximum
variation in the Young modulus for the material. We point
out that the phase contribution �
 from the gold nanopar-
ticles is of the order 0.1°.

The variation in the phase signal for the AM-AFM maxi-
mum nonlinearity mode is given from Eq. �73� as �−��cc
+���. The maximum phase variation measured over the
scan area from the AM-AFM maximum nonlinearity mode
was 1.5°. Using the above-stated values of the material and
cantilever parameters in Eqs. �90�–�92�, we calculate the
maximum variation in the Young modulus to be roughly
18%. This value is in good agreement with the value calcu-
lated from the RDF-AFUM image. The values of �E /E ob-
tained for the RDF-AFUM and the AM-AFM maximum
nonlinearity mode are also in good agreement with a value of
roughly 21% obtained from independent mechanical stretch-
ing experiments of pure polymer sheets in which the increase
in the modulus is attributed to the growth during stretching
of a crystalline phase having a larger Young modulus than
that of the original amorphous phase.42

VI. CONCLUSION

The various modalities of acoustic atomic force micros-
copy �A-AFM� have become important nanoscale character-

ization tools for the development of materials and devices.
One of the most significant factors affecting all A-AFM mo-
dalities is the cantilever tip-sample surface interaction force.
We have developed a detailed mathematical model of this
interaction that includes a quantitative consideration of the
nonlinearity of the interaction force as a function of the can-
tilever tip-sample surface separation distance. The model
makes full use of cantilever beam dynamics and the multiple
differentiability of the continuous force-separation curve that
results in a set of coupled differential equations, Eqs. �17�
and �18�, for the displacement amplitudes of both the canti-
lever and the sample surface. The coupled dynamical equa-
tions are recast in matrix form and solved by a standard
iteration procedure. Only flexural vibrations of the cantilever
and out-of-plane oscillations of the sample surface are con-
sidered in the present derivation.

We again point out that Eqs. �17� and �18� are obtained
assuming that the cantilever is a rectangular beam of con-
stant cross section, the dynamics of which are characterized
by a set of eigenfunctions that form an orthogonal basis for
the solution set. For some other cantilever shape, a different
orthogonal basis set of eigenfunctions would be appropriate.
However, the mathematical procedure used here would lead
again to Eqs. �17� and �18� with values of the coefficients
appropriate to the different cantilever geometry. Practicably,
this means that the shape of the cantilever is not as important
in the solution set as knowing the cantilever modal resonant
frequencies, obtained experimentally. The modal frequencies
and solution set are expanded to include nonlinear modes
generated by nonlinear interaction forces or large cantilever
drive amplitudes.

A general steady-state solution of the coupled dynamical
equations that accounts for the positions of the excitation
force �e.g., a piezotransducer� and the cantilever tip along the
length of the cantilever and for the position of the laser probe
on the cantilever surface is found. The solution is applied to
various A-AFM modalities including the commonly used
amplitude modulation–atomic force microscopy mode, force

TABLE I. Summary of equations given in the text for signal generation, image phase contrast, and image
amplitude contrast relevant to a given A-AFM modality. Note that MNR is maximum nonlinearity regime and
HCR is hard contact regime.

A-AFM modality
Signal generation

equations
Image phase

contrast equations
Image amplitude

contrast equations

RDF-AFUM
HFM

12–15, 54–65 �MNR�
14, 15, 54, 80–90

�MNR�
97–112

UFM 29, 33, 61, 62,
68

�MNR�
29, 61, 98, 113, 114

AFAM
FMM

12–15, 58, 62,
69–71

�MNR�
14, 15, 69, 84–86

�HCR�
14, 15, 69, 94

�HCR�
115

AM-AFM 29, 32, 35, 37, 39,
42, 57, 60, 63,

73–79

�MNR�
35, 73, 81, 90–92

�HCR�
77, 93

�HCR�
116
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modulation microscopy, atomic force acoustic microscopy,
ultrasonic force microscopy, heterodyne force microscopy,
and resonant difference-frequency atomic force ultrasonic
microscopy. Image generation and contrast equations are ob-
tained for each of the aforementioned A-AFM modalities
assuming for expediency that the contrast results only from
variations in the sample stiffness constant. Since the sample
stiffness constant is related directly to the Young modulus of
the sample, the contrast can be expressed in terms of the
variation in the Young modulus from point to point as the
sample is scanned. We note further the existence of two val-
ues of the sample stiffness constant, corresponding to the
attractive and repulsive regimes of the force-separation
curve. The two values allow for a bistability in the cantilever
oscillations that is experimentally observed.26

Equations for both the maximum nonlinearity regime and
the hard contact �linear� regime of cantilever engagement
with the sample surface are obtained. For A-AFM operation
outside these regimes, it is necessary to use all terms in the
solution set given in Sec. II to describe the signal output. It is
worthwhile to reiterate the caution given in Sec. IV A 2. The
extent to which the hard contact �linear regime� equations
apply depends on how well the approximation F��z0�→−�
holds. In those cases where such an assumption is suspect,
all terms in the equations for a given modality should be
used.

In order to test the validity of the present model, compara-
tive measurements of the maximum fractional variation of

the Young modulus �E /E in a film of LaRC™-CP2 polyim-
ide polymer were obtained from phase-generated images us-
ing the RDF-AFUM and AM-AFM maximum nonlinearity
modalities. The two modalities represent opposite extremes
in measurement complexity, both in instrumentation and in
the analytical expressions used to calculate �E /E. The val-
ues of 24% calculated for RDF-AFUM and 18% calculated
for the AM-AFM maximum nonlinearity mode are in re-
markably close agreement for such disparate techniques. The
agreement of both calculations with the value of 21% ob-
tained from independent mechanical stretching experiments
of LaRC™-CP2 sheet material offers strong evidence for the
validity of the present model.

The present model can also be used to quantify the image
contrast from variations in the sample damping coefficient �s

or from a combination of damping coefficient and Young
modulus variations in the material. Space limitations prohibit
the inclusion of such contrast mechanisms here, but the ef-
fects can be derived straightforwardly by the reader from the
equations derived in Sec. II. Although the present model is
developed for flexural oscillations of the cantilever and out-
of-plane vibrations of the sample surface, the model can in
principle be extended to include other modes of cantilever
oscillation and sample surface response. It is anticipated that
such a development would provide even greater opportuni-
ties for obtaining quantitative information on material prop-
erties using the various A-AFM modalities.

*john.h.cantrell@nasa.gov
†sac3k@virginia.edu

1 G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930
�1986�.

2 P. Maivald, H. J. Butt, S. A. Gould, C. B. Prater, B. Drake, J. A.
Gurley, V. B. Elings, and P. K. Hansma, Nanotechnology 2, 103
�1991�.

3 U. Rabe and W. Arnold, Appl. Phys. Lett. 64, 1493 �1994�.
4 U. Rabe, S. Amelio, M. Kopychinska, S. Hirsekorn, M. Kempf,

M. Goken, and W. Arnold, Surf. Interface Anal. 33, 65 �2002�.
5 O. Kolosov and K. Yamanaka, Jpn. J. Appl. Phys., Part 2 32,

L1095 �1993�.
6 K. Yamanaka, H. Ogiso, and O. Kolosov, Appl. Phys. Lett. 64,

178 �1994�.
7 M. T. Cuberes, H. E. Alexander, G. A. D. Briggs, and O. V.

Kolosov, J. Phys. D 33, 2347 �2000�.
8 G. S. Shekhawat and V. P. Dravid, Science 310, 89 �2005�.
9 S. A. Cantrell, J. H. Cantrell, and P. T. Lillehei, J. Appl. Phys.

101, 114324 �2007�.
10 L. Muthuswami and R. E. Geer, Appl. Phys. Lett. 84, 5082

�2004�.
11 D. C. Hurley, K. Shen, N. M. Jennett, and J. A. Turner, J. Appl.

Phys. 94, 2347 �2003�.
12 R. E. Geer, O. V. Kolosov, G. A. Briggs, and G. S. Shekhawat, J.

Appl. Phys. 91, 4549 �2002�.
13 Oleg V. Kolosov, M. R. Castell, C. D. Marsh, G. A. Briggs, T. I.

Kamins, and R. S. Williams, Phys. Rev. Lett. 81, 1046 �1998�.

14 G. G. Yaralioglu, F. L. Degertekin, K. B. Crozier, and C. F.
Quate, J. Appl. Phys. 87, 7491 �2000�.

15 Y. Zheng, R. E. Geer, K. Dovidenko, M. Kopycinska-Müller,
and D. C. Hurley, J. Appl. Phys. 100, 124308 �2006�.

16 M. Kopycinska-Müller, R. H. Geiss, and D. C. Hurley, Ultrami-
croscopy 106, 466 �2006�.

17 L. Nony, R. Boisgard, and J. P. Aime, J. Chem. Phys. 111, 1615
�1999�.

18 K. Yagasaki, Phys. Rev. B 70, 245419 �2004�.
19 H.-L. Lee, Y.-C. Yang, W.-J. Chang, and S.-S. Chu, Jpn. J. Appl.

Phys., Part 1 45, 6017 �2006�.
20 J. Kokavecz, O. Marti, P. Heszler, and A. Mechler, Phys. Rev. B

73, 155403 �2006�.
21 K. Wolf and O. Gottlieb, J. Appl. Phys. 91, 4701 �2002�.
22 J. A. Turner, J. Sound Vib. 275, 177 �2004�.
23 R. W. Stark and W. M. Heckl, Rev. Sci. Instrum. 74, 5111

�2003�.
24 R. W. Stark, G. Schitter, M. Stark, R. Guckenberger, and A.

Stemmer, Phys. Rev. B 69, 085412 �2004�.
25 H. Hölscher, U. D. Schwarz, and R. Wiesendanger, Appl. Surf.

Sci. 140, 344 �1999�.
26 R. Garcia and R. Perez, Surf. Sci. Rep. 47, 197 �2002�.
27 L. Meirovitch, Analytical Methods in Vibrations �Macmillan,

New York, 1967�.
28 I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics

and Modern Engineering �McGraw-Hill, New York, 1958�.
29 R. G. Parr and W. Yang, Density-Functional Theory of Atoms

ANALYTICAL MODEL OF THE NONLINEAR DYNAMICS… PHYSICAL REVIEW B 77, 165409 �2008�

165409-15



and Molecules �Oxford University Press, New York, 1989�.
30 R. B. Leighton, Principles of Modern Physics �McGraw-Hill,

New York, 1959�.
31 G. Burns, Solid State Physics �Academic, San Diego, CA, 1989�.
32 B. M. Law and F. Rieutord, Phys. Rev. B 66, 035402 �2002�.
33 M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel, P.

Kappenberger, S. Martin, A. Baratoff, and H.-J. Güntherodt,
Science 291, 2580 �2001�.

34 J. Polesel-Maris, A. Piednoir, T. Zambelli, X. Bouju, and S.
Gauthier, Nanotechnology 14, 1036 �2003�.

35 T. Eguchi and Y. Hasegawa, Phys. Rev. Lett. 89, 266105 �2002�.
36 M. Saint Jean, S. Hudlet, C. Guthmann, and J. Berger, J. Appl.

Phys. 86, 5245 �1994�.

37 H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F.
Capasso, Phys. Rev. Lett. 87, 211801 �2001�.

38 J. H. Cantrell, J. Appl. Phys. 96, 3775 �2004�.
39 D. C. Wallace, in Solid State Physics, edited by H. Ehrenreich, F.

Seitz, and D. Turnbull �Academic, New York, 1970�, Vol. 25, p.
301.

40 R. B. Thompson and H. F. Tiersten, J. Acoust. Soc. Am. 62, 33
�1977�.

41 L. I. Schiff, Quantum Mechanics �McGraw-Hill, New York,
1968�.

42 C. C. Fay, D. M. Stoakley, and A. K. St. Clair, High Perform.
Polym. 11, 145 �1999�.

JOHN H. CANTRELL AND SEAN A. CANTRELL PHYSICAL REVIEW B 77, 165409 �2008�

165409-16


