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Abbreviations

a1, a2, a3, a4 and
A1, A2, A3, A4 Constants in the shape function y(x)
aC Contact radius
α Wave number of the flexural waves
A Cross-section area of the cantilever
b Thickness of the cantilever
cP Ratio φLat/φ

dY0, dX0 Normalized amplitude of the sensor tip in y- and x-direction,
respectively

δn, δL Normal, lateral contact deflection (in the coordinate system of
the sample surface)

E Young’s modulus of the cantilever
E∗ Reduced Young’s modulus of the contact
ε Displacement of the additional mass mL from the center of the

beam
ET, ES Young’s modulus of the tip, the surface
G∗ Reduced shear modulus of the contact
GT, GS Shear modulus of the tip, the surface
Fn, FL Normal, lateral forces (in the coordinate system of the sample

surface)
f Frequency
ϕ Tilt angle of the cantilever
φ, φLat Dimensionless normal, lateral contact function
Φ Phase
γ , γLat Normal, lateral contact damping
h Height of the sensor tip
ηAir Damping constant describing losses by air
I Area moment of inertia
L Length of the cantilever
L1 Distance from the fixed end of the cantilever to the position of

the tip
L2 Distance from the free end of the beam to the tip
k∗, k∗

Lat Normal, lateral contact stiffness
kC Static spring constant of the cantilever
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m∗, m Effective mass, real mass of the cantilever
mL Additional mass
M Moment
MT, MS Indentation modulus of the tip, the sample surface
N(α), N0(α) Denominators in the formulas for forced vibration of the beam
p, pLat Dimensionless normal, lateral contact damping
Q Quality factor
R Radius of the sensor tip
ρ Mass density of the cantilever
S Contact area
S0, S1, S2, S3, S4 Terms in the characteristic equation
σ Sensitivity
t Time
u0 Amplitude of excitation
w Width of the cantilever
x, x2 Coordinate in length direction of the cantilever
y, y2 Deflection of the cantilever in its thickness direction
X, T , U Auxiliary functions in the boundary conditions
ω Circular frequency
Ω Characteristic function
ψ ψ = αL dimensionless wave number
AFAM Atomic force acoustic microscopy
AFM Atomic force microscopy
FMM Force modulation microscopy
SAFM Scanning acoustic force microscopy
SAM Scanning acoustic microscopy
SLAM Scanning local acceleration microscopy
SMM Scanning microdeformation microscopy
UAFM Ultrasonic atomic force microscopy
UFM Ultrasonic force microscopy

2.1
Introduction

Materials with an artificial nanostructure such as nanocrystalline metals and ceramics
or matrix embedded nanowires or nanoparticles are advancing into application.
Polymer blends or piezoelectric ceramics are examples for materials of high technical
importance possessing a natural nanostructure which determines their macroscopic
behavior. Structures such as thin films or adhesion layers are of nm dimensions in
only one direction, but micromechanical devices and even nano-devices are feasible
which are of nm size in three dimensions. In the nm range the mechanical properties
such as hardness or elastic constants and the symmetry of the crystal lattice can
vary with the size of the object. Furthermore, the properties of structures with
nm-dimensions depend strongly on the surrounding material and on the boundary
conditions in general. Therefore there is a need to measure mechanical properties on
a nano-scale.
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2.1.1
Near-field Acoustic Microscopy

Ultrasonic imaging based on transmission and reflection of ultrasonic waves has been
used for a long time for elasticity measurements and flaw detection in different areas
such as physics, nondestructive testing and medicine. By measuring the dispersion
of laser generated surface acoustic waves in the frequency range of several 10 MHz
up to several 100 MHz, the elastic constants of thin films can be determined [1].
The distance covered by the acoustic wave between the generating laser spot and
the receiver (about 10 mm) defines the lateral resolution of this technique. In the
classical scanning acoustic microscopy (SAM), which was developed in the 1970th,
an acoustic wave is focused onto the sample surface by a sapphire lens, and the
reflected acoustic waves are detected [2]. The imaging contrast depends on the
acoustic impedance ρv(ρ = mass density of the sample, v = sound velocity) and
consequently on the elastic constants of the sample. Defects like cracks, inclusions
or mechanical stresses influence the acoustic impedance and can also be imaged if
they are in a certain penetration depth inside the sample.

According to Abbe’s principle, techniques using focused waves are restricted in
their lateral resolution to about half a wavelength. A focused acoustic beam in water
yields a spot diameter of about 1 µm at 1 GHz frequency. The local resolution can
be improved if an acoustic wave is guided towards the sample by a structure which
is smaller and closer to the surface than the acoustic wavelength. Different acoustic
microscopes based on this near-field principle were proposed [3–6]. One drawback
of this type of microscope is a low signal level because the traveling acoustic waves
have to pass through an nm-scaled structure. Alternatively, the near-field sensor can
be constituted by a small object which vibrates at one of its resonant frequencies.
Güthner et al. used a resonating tuning fork [7] vibrating at 33 kHz in air. One
corner of the tuning fork served as a sensor tip. Hydrodynamic interaction between
the senor tip and the sample surface damps the vibration and shifts the resonant
frequency of the tuning fork. As the damping depends mainly on the thickness of
the air layer between sensor and sample, there is almost no contrast by the elasticity
of the sample, but the technique can be used to image topography. More recently,
tuning forks or length extension quartz resonators are used as force sensors for
high-resolution atomic force microscopy in air and in vacuum [8].

After the invention of the Atomic Force Microscope (AFM) [9] near field mi-
croscopy was strongly promoted and various operation modes and related techniques
emerged. Since 1993, several microscopes combining AFM with ultrasonic imaging
have been developed, named for example ultrasonic force microscopy (UFM) [10],
scanning acoustic force microscopy (SAFM) [11], atomic force acoustic microscopy
(AFAM) [12], and ultrasonic atomic force microscopy (UAFM) [13]. These tech-
niques can be considered as special types of dynamic force microscopy or as near-
field techniques from the point of view of ultrasonic imaging. The sensor tip of the
AFM has a radius of only several nm up to several 100 nm. The tip–sample contact
radius, which is orders of magnitude smaller than the acoustic wavelength, defines
the local resolution.

To reach high local resolution, nanoscaled probes can either be used as emitters
or as detectors of ultrasound. In the latter case acoustic waves are generated with
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conventional ultrasonic transducers, and a scanning probe microscope is used to
detect the acoustic wave fields at the sample surface. In atomic force microscopy
the tip–sample forces are a nonlinear function of tip–sample distance. The nonlinear
forces cause frequency mixing, if an ultrasonic excitation signal is applied to a trans-
ducer below the sample and another vibration with a slightly different frequency is
excited in the cantilever and its sensor tip [11, 14]. In the scanning acoustic force
microscopy [14] mixing of two surface waves which propagate in different direction
is exploited to image surface acoustic wave fields with submicron lateral resolu-
tion. Interference phenomena caused by scattering of a plane wave by a disk-shaped
structure were observed in this way [15].

The nonlinearity of the tip–sample forces has a rectifying effect which is ex-
ploited in ultrasonic force microscopy [10, 16]. In UFM, an ultrasonic transducer
generating longitudinal waves is placed below the sample. The amplitude of the
sinusoidal excitation applied to the transducer is modulated with a saw-tooth sig-
nal. The acoustic wave causes a high frequency out-of-plane surface vibration with
a low-frequency amplitude modulation. The sensor tip of the AFM is in contact with
the vibrating sample surface and when the threshold amplitude is reached, the sensor
tip lifts off from the surface. A lock-in amplifier which operates at the modulation
frequency detects the envelope of the high frequency signal. This rectifying property
was called “mechanical diode effect”. A qualitative image of elastic sample prop-
erties and contrast from subsurface objects can be obtained [16–18]. A rectifying
effect due to the nonlinear forces is also observed when the amplitude modulated
vibration is excited at the fixed end of the cantilever (“waveguide UFM”) [19]. The
contrast in UFM was examined by different research groups [20,21]. The advantage
of the mixing technique and the UFM is the low bandwidth which is required for the
position detector in the AFM. Because the modulation frequency can be chosen in
the kHz range, a direct detection of signals at MHz or even GHz frequencies is not
necessary. As both, elasticity and adhesion, contribute to the image contrast [22], it
is difficult to separate surface elasticity quantitatively from adhesion.

2.1.2
Scanning Probe Techniques and Nanoindentation

Different dynamic operation modes of the scanning force microscope were suggested
to measure elasticity on an nm scale. In the force-modulation mode (FMM) the sen-
sor tip is in contact with the probed surface, and the surface is vibrated normally or
laterally at a frequency below the first resonance of the cantilever [23]. The amplitude
or phase of the vibration of the cantilever is evaluated. Force modulation microscopy
provides elasticity contrast of softer samples like for example polymers. If stiffer ma-
terials like metals and ceramics are to be examined, the contact stiffness between tip
and surface becomes much higher than the spring constant of the cantilever (0.1 N/m
up to several 10 N/m, depending on the type of beam) and the contrast decreases.
Instead of applying the force indirectly by varying the distance between the surface
and the fixed end of the cantilever, other research groups applied a magnetic force
directly to the cantilever [24,25]. Some authors extend force-modulation microscopy
to the higher modes of the cantilever [25–27]. Here, this type of operation is called
contact-resonance spectroscopy and will be treated in detail in the next paragraphs.
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In the pulsed force mode [28] the distance between the fixed end of the sensor and
the sample surface is also modulated at a frequency below the resonant frequencies
of the sensor. The amplitude is so high (10–500 nm) that the tip loses contact with
the sample surface during its vibration cycle. Characteristic points in the vibration
signal of the cantilever are evaluated to image elasticity and adhesion. In scanning
local acceleration microscopy (SLAM) the sensor tip is in contact with a sample
surface that is vibrated out-of-plane with a frequency slightly above the first flexural
resonance of the cantilever [29]. Using a temperature controlled SLAM instrument,
Oulevey et al. observed martensitic phase transformation in NiTi-alloy [30].

Force-modulation microscopy can be considered as direct detection of low fre-
quency acoustical vibrations by an AFM. A sensor tip which touches the sample
surface during its vibration cycle for example in FMM or tapping mode [31] radiates
sound into the sample, but the amplitudes are usually below the detection limit of
commercial transducers [32]. If the sensor of the AFM is magnified by only one
or two orders of magnitude like in scanning microdeformation microscopy (SMM),
the acoustical amplitudes transmitted through the sample become detectable [33].
Subsurface features were imaged by SMM in transmission mode [34]. The vibration
of the cantilever was measured with a piezoelectric element [35] or with an optical
interferometer pointing onto the cantilever [36]. The AFM sensor and the SMM
cantilever are so similar to each other that many aspects of the equation of motion
and the contact mechanics models are identical. As the radius of the SMM sensor tip
is larger than the radius of an AFM tip the tip–sample interaction is easier to control
and macroscopic contact models are easier to apply. Because the contact area scales
with the size of the sensor tip, the lateral resolution is lower in SMM than in the
AFM based techniques.

Nanoindentation, which was originally developed to measure hardness, can also
be used for elasticity measurements [37]. In dynamic nanoindentation a low ampli-
tude sinusoidal force modulation is superimposed to the quasi static load applied to
the indenter. Amplitude and phase of the vibration of the electromechanical system,
constituted by the indenter and the force detection unit, are evaluated to measure
contact stiffness as a function of load [38]. The indenter tips are of Berkovich type
made of diamond or spherical with a radius of 100 µm. The local resolution of the
nanoindenter is typically 100 nm to 200 nm because of the mechanical stress field in
the sample at a minimum penetration depth of about 20 nm. Seyed Asif et al. imaged
the real and imaginary parts of the Young’s modulus of carbon fibers in epoxy matrix
by dynamic nanoindentation [39]. Especially for examination of softer materials like
polymers, dynamic nanoindentation became very popular during the last years. An
overview of commercial instruments can be found for example in a publication by
Bushan and Li [40].

2.1.3
Vibration Modes of AFM Cantilevers

The typical dimensions of cantilevers for atomic force microscopy are several 100 µm
in length, several 10 µm in width and several 100 nm up to several µm in thickness.
The sensors are small plates or beams having distributed mass, and they can be
excited to different modes of vibration such as flexural or torsional modes. While
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most of the dynamic scanning probe applications relied on the fundamental modes
of the beams, for noise analysis the importance of the higher eigenmodes was
recognized by different authors [41, 42]. In atomic force acoustic microscopy and
ultrasonic atomic force microscopy the flexural resonant frequencies of atomic force
microscope cantilevers are measured [13, 43, 44]. The sensor of the AFM can be
considered as a cantilever beam which is clamped at one end and free at the other
end. If the sensor tip is in contact with a sample surface tip–sample interaction forces
change the end conditions and all resonant frequencies of the cantilever are shifted.
Furthermore, tip–sample interaction causes damping and changes the width of the
resonance curves.

When the cantilever is in flexural vibration, a large component of the amplitude
of the tip apex is normal to the sample surface. Therefore flexural modes are used to
measure normal tip–sample contact stiffness, which in turn depends on the Young’s
modulus of tip and sample, on the shear modulus of tip and sample, on the contact
area, and on the adhesion forces. In most cases, the flexural modes cause an angular
oscillation of the cantilever beam at the position where the tip is fixed, which in
turn leads to an oscillation of the tip apex parallel to the surface. This means that
the flexural modes are also influenced by lateral tip–sample contact stiffness and
friction.

Torsion of AFM cantilevers is used to measure lateral forces and friction [45,46]
and a variety of dynamic operation modes exploiting torsional vibration is known.
Similar to AFAM and UAFM the torsional resonant frequency and the width of the
resonant peaks can be determined to measure in-plane surface properties [47,48]. At
low amplitudes the sensor tip sticks to the sample surface, and at higher amplitudes
sliding sets in. The stick-slip events cause a characteristic plateau in the shape
of the contact-resonance curves [49]. Torsional modes are not the only type of
vibration exhibiting a strong component of lateral tip–sample amplitude. Bending
of the cantilever in its thickness direction leads to non-negligible lateral tip–sample
displacement [50], and lateral bending modes of the cantilever can be used for
imaging and spectroscopy [51]. In the so-called “overtone atomic force microscopy”
Drobeck et al. exploited the torsional vibration modes of V -shaped cantilevers
to measure in-plane surface stiffness [52, 53]. Elasticity contrast was obtained on
Al−Ni−Fe quasicrystal samples [52], and the lateral stiffness of Si, Al, and CdTe
surfaces was evaluated quantitatively [53]. The results were obtained in ambient
conditions by analysis of the thermal noise of the cantilevers.

2.2
Linear Contact-resonance Spectroscopy Using Flexural Modes

Contact-resonance spectroscopy techniques which exploit the flexural modes of the
cantilevers can be organized according to the method of excitation. In the AFAM-
technique a transducer below the sample excites longitudinal waves which cause out-
of-plane vibrations of the investigated surface (transducer 1 in Fig. 2.1) [43,44]. Via
the tip–sample contact forces the vibrations are transmitted into the cantilever. The
flexural vibrations can also be excited by a transducer which generates oscillations of
the fixed end of the beam (transducer 2 in Fig. 2.1). This technique (UAFM) was first
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Fig. 2.1. In the AFAM-mode the flexural vibrations of the cantilever are excited by a transducer
below the sample (transducer 1). The vibrations can also be excited by a transducer which excites
the fixed end of the cantilever (transducer 2, UAFM-mode). The low frequency components
of the beam deflection signal are used to control the static deflection of the cantilever. The
high frequency components of the signal are evaluated for example by a lock-in-amplifier for
ultrasonic spectroscopy or imaging

published by Yamanaka and Nakano and continuously developed afterwards [13,54–
56]. Alternatively, a ZnO transducer can be fabricated directly on the sensor beam to
excite the vibrations in the UAFM-mode [57–59]. Dupas et al. fixed one end of the
cantilever to a piezoelectric bimorph [60]. For simplicity the technique is designated
here by AFAM or UAFM, when the vibrations are excited by the sample surface or
by the fixed end of the beam, respectively. Excitation by a concentrated harmonic
force acting directly on the cantilever [25] or spectral analysis of thermomechanical
noise of the sensor [52, 53] is also reported for contact-resonance spectroscopy.

In the first AFAM experiments the ultrasonic transducer below the sample was
excited with electrical spikes [61]. The resulting out-of-plane deflection of the inves-
tigated surface is a short pulse with a spectrum depending on the resonant frequency
of the transducer and the transmission of the sample. The pulse at the surface excites
a vibration in the cantilever which decays according to the time constants of contact
damping and air damping. Fourier transformation of the cantilever vibrations showed
that the spectrum contained contact resonances. However, with the pulse excitation
the senor tip loses contact with the sample surface very easily and the signals are
strongly influenced by adhesion. The current state of the art in AFAM and UAFM
is to excite the vibration with sinusoidal signals and to sweep the frequency to mea-
sure spectra. Frequency sweeps are also common in other dynamic AFM operation
modes, but in the techniques discussed here the sensor tip is in contact with the
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sample surface while the spectra are measured. This means that the static deflection
of the cantilever must be controlled or monitored during the sweep. Furthermore,
the techniques discussed here do not only use the fundamental resonant frequency
of the cantilever but consider the higher modes, too.

The necessary bandwidth of excitation and detection depends on the type of
sensor beam which is used. Softer samples like polymers can be examined with
sensors having a spring constant of only a few N/m or less, while stiffer samples
require stiffer beams with several 10 N/m spring constant. As will be shown in the
following, for example the first contact-resonance frequency of the types of beams
listed in Table 2.2 is always lower than 1 MHz. This means that ultrasonic imaging
is possible with a bandwidth of 1 MHz. For quantitative evaluation, the bandwidth
should be large enough to cover two contact resonances at a minimum.

The continuous wave signals are excited by a function generator. A fast lock-
in amplifier can be used to determine amplitude and phase of the vibration of the
cantilever. Alternatively, the ultrasonic signal and reference can be down converted
to a lower frequency and reference (20 kHz) and subsequently fed to a lock-in-
amplifier [62]. In this case the lock-in-amplifier works at a fixed lower frequency
and needs not to follow the swept frequency. A network analyzer can also be used
to excite and to detect the signals in spectral measurements [57]. Dupas et al. used
a stroboscopic technique and increased the bandwidth of detection to 4 MHz by
modulating the light intensity of the laser diode of the beam-deflection detector [60].
There are different possibilities of acoustical imaging using contact resonances which
are discussed in Chap. 6.

2.2.1
Flexural Vibrations of Clamped-free Beams

The most widespread commercial cantilevers are either of triangular or of approx-
imately rectangular shape. The vibrational modes for example of V-shaped beams
or dagger-shaped beams can be calculated numerically [63, 64] or using analytical
approximations [65]. However, analytical formulas can be evaluated extremely fast
and they may provide a deeper understanding of how the different parameters in-
fluence the vibration. This analysis will therefore be restricted to cantilevers with
approximately rectangular shape because they can be described with satisfactory
precision by analytical models. Under the precondition that its length is much larger
than its width and thickness, the micro fabricated sensor beam can be regarded as an
elastic beam. If x is the coordinate in length direction of the beam and y the coor-
dinate in thickness direction, the equation of motion for damped flexural vibrations
becomes [66]:

EI
∂4 y

∂x4
+ ηAirρA

∂y

∂t
+ ρA

∂2 y

∂t2
= 0 (2.1)

where E is the Young’s modulus of the cantilever, ρ is its mass density, A is the area
of its cross section, I is the area moment of inertia and ηAir is a damping constant
expressing the dissipation caused by the air. y(x) is the deflection at position x,
∂y/∂x is the slope of the beam at position x, EI∂2 y/∂x2 is the torsional moment, and
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EI∂3 y/∂x3 is the shear force. One seeks a harmonic solution in time with angular
frequency ω = 2π f . The solution of the differential equation of motion may be
written:

y(x, t) = y(x) · y(t) = (
a1 eαx + a2 e−αx + a3 eiαx + a4 e−iαx) eiωt . (2.2)

The mode shape y(x) can also be expressed as:

y(x) = A1(cos αx + cosh αx) + A2(cos αx − cosh αx)

+ A3(sin αx + sinh αx) + A4(sin αx − sinh αx) , (2.3)

where a1, a2, a3, a4 and A1, A2, A3, A4 are constants. By substituting the solution
(2.2) in the equation of motion (2.1) one obtains the dispersion relation for a flexural
wave with complex wave number α:

EIα4 + iρAηAirω − ρAω2 = 0 (2.4)

α± = ± 4

√
ρA

EI
(ω2 ∓ iηAirω) . (2.5)

In absence of damping the dispersion equation simplifies to:

f = (αL)2

2π

1

L2

√
EI

ρA
. (2.6)

Boundary conditions must be fulfilled if the beam is of finite length L. By
substituting the boundary conditions in the general solution one obtains a charac-
teristic equation. For a beam with one clamped end and one free end one finds in
textbooks [66, 67]:

cos αL cosh αL + 1 = 0 (2.7)

The roots αn L of this equation can be calculated numerically, where n =
{1, 2, 3, . . . } is the mode number. Examples are listed in Table 2.1. Using the disper-
sion relation one obtains the resonant frequencies of the beam. The quality factor Q
of the resonances is given by:

Q = ωn

∆ω
= ωn

ηAir
(2.8)

According to (2.8), the quality factor Q increases with the mode number. Ex-
perimentally one often observes an increase in Q for the first modes up to 1 MHz
followed by a decrease at still higher frequencies [44]. This means that the damping
ηAir is in fact a function of the frequency. Quality factors of the first flexural reso-
nances of commercial sensors in air are typically between Q = 200 and Q = 900
for sensors made of single crystal silicon.

With most commercial atomic force microscopes the cantilever can be excited to
forced vibration when its one end is free. The fundamental mode of the clamped-free
beam and the quality factor of the resonance can be measured in this way. On the
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Table 2.1. Dimensionless wave number αn L and frequency ratio fn/ f1,free for different boundary
conditions of the beam: clamped-free ( fn,free), clamped-pinned ( fn,pin), and clamped-clamped
( fn,clamp)

n (αn L)free fn,free/ f1,free (αn L)pin fn,pin/ f1,free (αn L)clamp fn,clamp/ f1,free

1 1.87510 1.00 3.92660 4.39 4.73004 6.36
2 4.69409 6.27 7.06858 14.21 7.85320 17.54
3 7.85476 17.55 10.21018 29.65 10.99561 34.39
4 10.99554 34.39 13.35177 50.70 14.13717 56.84
5 14.13717 56.84 16.49336 77.37 17.27876 84.91
6 17.27876 84.91 19.63495 109.65 20.42035 118.60
7 20.42035 118.60 22.77655 147.55 23.56194 157.90

≈ 2n−1
2 π ≈ 4n+1

4 π ≈ 2n+1
2 π

other hand, the constants ρ, A, E, I , and ηAir are often unknown. It is therefore better
to rewrite the dispersion relations (2.5) and (2.6) in terms of measurable quantities:

α±L = ±α1,freeL · 4

√
ω2

ω2
1,free

∓ i
ηAirω

ω2
1,free

≈ ±1.8751 · 4

√(
f

f1,free

)2

∓ i
1

Q1,free

f

f1,free
(2.9)

f

f1,free
= (αL)2(

α1,freeL
)2 . (2.10)

Due to the high quality factors Q of the flexural modes in air the shift of
the resonant frequencies caused by air damping is negligible. Here the resonant
frequencies of the clamped-free beam are sometimes called “free” resonances. In
this case “free vibration” is not meant as the opposite of “forced vibration” but
relates to the end condition of the beam. The theory predicts a certain ratio of the
free flexural resonant frequencies regardless of the cross section and the length of
the beam, for example:

f2,free

f1,free
= (4.6941)2

(1.8751)2 = 6.27 . (2.11)

The first ten solutions αn L for the clamped-free beam without damping
(ηAir = 0) are listed in Table 2.1. Note that the bending modes are not equidis-
tant in frequency. According to the dispersion equation, the frequency ω is not
proportional to the wave number α, but ω ∼ α2. For the higher modes the fre-
quency interval to the next higher mode increases with the square of the fre-
quency. The higher bending modes are no harmonics of the fundamental fre-
quency.
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2.2.2
The Point-mass Model

It is very common in atomic force microscopy to approximate the fundamental
flexural mode of the clamped-free beam by a harmonic oscillator (Fig. 2.2). The
constants of a point-mass model are chosen such that the resonant frequency of the
harmonic oscillator ω0 equals the first resonant frequency of the beam ω1,free:

ω1,free =
√

kC

m∗ ≡ ω0 (2.12)

The static spring constant kC of the cantilever for forces acting at x = L is:

kC = 3EI

L3
= Eb3w

4L3
(2.13)

The second expression holds for rectangular beams, where w and b are the width
and thickness, respectively. The effective mass m∗ is now calculated according to

m∗ = kC

ω2
1,free

= 3ρLwb

(α1,freeL)4
≈ 1

4
m (2.14)

Here m is the real mass of the cantilever. The motion of the beam at the free end
(x = L) can now be described by the equation of motion of a point-mass m∗:

m∗ ÿ(L, t) + m∗ηAir ẏ(L, t) + kC y(L, t) = 0 (2.15)

Interaction between the sensor tip located at x = L and a sample surface gives
rise to forces, which can be represented by a second spring with the stiffness k∗. The
second spring leads to a change of the resonant frequency of the system according
to [44, 68, 69]:

ω =
√

k∗ + kC

m∗ = ω0

√
1 + k∗

kC
(2.16)

It has been shown that the point-mass model fails to predict quantitatively correct
amplitudes and resonant frequencies when the contact stiffness k∗ is of the same
order of magnitude or larger than the static spring constant kC of the sensor [70].
Nevertheless, the fundamental frequency of the clamped-free beam ω0 or f0 =
ω0/2π, the static spring constant kC, and the effective mass m∗ are very useful to
characterize a sensor.

Fig. 2.2. Optical micrograph of an AFM cantilever and point-mass model
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2.2.3
Experiments with Clamped-free Beams

With respect to application it is important to examine how well real sensors corre-
spond to the flexural beam model. It is helpful to use a calibrated optical interfer-
ometer with a bandwidth of several MHz to examine as many of the higher modes
of the cantilever as possible [44, 71]. For example, Hoummady et al. examined
higher flexural modes of AFM cantilevers interferometrically in order to use them
for imaging [72] and Cretin and Vairac used an optical interferometer to measure
the vibration of the sensor in SMM [36].

Figure 2.3 shows a set-up with a Michelson-heterodyne interferometer [73].
The chip at which the cantilever is fixed is glued to an ultrasonic transducer (shear
wave transducer V155, 5 MHz center frequency, Panametrics-NDT, Waltham, MA,
USA). The transducer is excited with a function generator (model 33120A, Agilent
Technologies). Due to the high quality factors Q of its modes, peak-to-peak voltages
of several volts are sufficient to excite vibration amplitudes of the beam of several
nm or even several 10 nm. Though a longitudinal wave transducer excites flexural
waves more effectively, the shear wave transducer was chosen because it excites
as many types of modes as possible. Torsional resonances and lateral modes could
be examined in this way, too. Depending on the dimensions and material constants
of the beam, it can happen that for example a torsional mode and a flexural mode
have almost the same frequency. Such a situation leads to mode coupling [71, 74]
and consequently to difficulties in quantitative evaluation. The He − Ne Laser beam
of the interferometer is focused onto the cantilever with a microscope objective.
The resulting spot diameter is only a few µm. The cantilevers are mounted on
a motor-driven x-y table to scan their surface with the help of two stepper motors.

Fig. 2.3. Set-up of the optical interferometer to measure the amplitudes of the clamped-free
cantilever vibration modes. The chip of the cantilever is glued to an ultrasonic transducer which
provides an excitation of vibration up to a few MHz. The laser beam of the interferometer is
focused onto the cantilever to a spot size of a few µm. Step motors controlled by a computer
scan the surface of the cantilever
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Knowledge of the two-dimensional mode shape helps to identify modes which appear
as unknown peaks in the resonance spectrum. The interferometer signal is read with
a digital oscilloscope, amplitude and phase of the vibration are obtained by fast
Fourier transformation. A three dimensional visualization of such a measurement is
shown in Fig. 2.4.

A spectral analysis showed that the beams made of silicon single crystal behaved
linearly at vibration amplitudes of a few ten nm, i.e. they vibrated only at the
frequency of excitation. After measurement of the fundamental mode the higher
resonant frequencies of the clamped-free beam can be predicted with the frequency
ratios in Table 2.1. Usually the values calculated in this way are close enough to the
experimental frequencies to detect the higher modes easily. In detail, however, there
are systematic deviations from the theory which depend on the type of beam. The
deviations from theory can be visualized by dividing the frequencies of the higher
modes by the theoretical ratio fn,free/ f1,free and plotting them as a function of mode
number. In case of perfect correspondence of the sensor with the model such a plot
would provide a horizontal line.

Figures 2.5a and b show the resonant frequencies of a number of silicon beams.
Typical dimensions of the beams examined here are listed in Table 2.2 The abso-
lute resonant frequencies of the beams vary because of thickness variations of the

Fig. 2.4. Bending modes of a cantilever made of single crystal silicon measured with an optical
interferometer in air. The frequency of the first mode was below detection limits of the inter-
ferometer. Mode n = 10 was not detected for unknown reasons. The dimensions of the beam
were 1.61 × 45 × 440 µm3 (thickness × width × length) and the static spring constant was
kC = 0.094 N/m according to the manufacturer
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Fig. 2.5. (a) Resonant frequencies of the first four flexural modes of 23 cantilevers from 6 different
wafers (type FM, Nanosensors). (b) Resonant frequencies of the first three flexural modes of 19
cantilevers from two different wafers (type NCL, Nanosensors). The frequencies of the higher
modes were divided by the theoretical frequency ratio fn/ f0. Modes of each individual beam
are connected by a line. The same symbol and line type was used for beams from the same
wafer. In case of perfect correspondence to the flexural beam model, the frequencies would be
connected by horizontal lines. The strong deviations in (b) were caused by multiple peaks

Table 2.2. Typical data of single crystal silicon cantilevers used here as provided by the manu-
facturer (Nanosensors, NanoWorld AG, Neuchatel, Switzerland). The cantilevers are of approx-
imately rectangular shape. The cross-section of the beams is trapezoidal

Type of beam Length L Width w Thickness b Spring constant Resonant frequency
[µm] [µm] [µm] kC [N/m] [kHz]

NCL 215–235 20–45 6–8 21–98 146–236
FM 215–235 20–35 2–4 0.5–9.5 45–115
CONT 440–460 42.5–57.5 1–3 0.02–0.77 6–21

silicon wafers used for manufacturing. Furthermore, for one type of beam (FM) the
frequencies increase more strongly, while for another type (NCL) they increase less
with the mode number than predicted by the model. These systematic deviations
are caused by details which are not considered in the simple analytical model. For
example the beams are made of mechanically anisotropic material, the clamping of
the fixed end is not infinitely stiff and symmetric, and the cross-section of the beams
is not constant. The influence of these details on the resonant frequencies can be
examined theoretically by finite-element calculations [75]. For example Hurley et al.
examined the deviations caused by a triangular end of the beam (dagger shape) [64].

Another practical problem which often occurs when resonant frequencies are
measured in an AFM is double peaks or even multiple peaks. Mode coupling can
only happen if two modes have frequencies close to each other. Therefore it is likely
that most of the unwanted maxima in the spectrum are caused by maxima which are
already present in the spectrum of the vibration which excites the beam. The spectrum
of the forced linear vibration is a product of the vibration spectrum of the chip and
the spectrum of the cantilever. The chip of the cantilever has typical dimensions
of 4 × 2 × 0.5 mm3 (length × width × thickness) and is therefore a mechanical
structure with numerous resonant frequencies. The exact spectrum depends on how
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the chip is clamped [75]. In the AFAM-mode ultrasonic waves transmitted through
a sample generate the surface vibration, which means that in this case the spectrum
of the exciting signal depends on the material, the dimensions, and the clamping of
the sample.

2.3
Contact Forces as Linear Springs and Dashpots

When the sensor tip is in contact with a sample surface, the tip–sample forces change
the end conditions of the beam. Figure 2.6 shows the situation schematically. The
tip–sample forces are a nonlinear function of the tip–sample separation and they
can also be hysteretic. Here it is assumed that the vibration amplitudes are so small
that the forces can be represented by a system of linear springs and dashpots. In
case of bending modes one can treat the problem in only two dimensions. There are
forces normal to the surface represented by the normal contact stiffness k∗ and the
contact damping γ and forces lateral to the surface represented by the lateral contact
stiffness k∗

Lat and a lateral contact damping γLat. For technical reasons the cantilever
is tilted with respect to the surface by an angle ϕ (11◦ to 15◦), i.e. the coordinate
system of the surface is rotated by ϕ with respect to the coordinate system of the
cantilever.

The normal and lateral contact stiffness can be calculated from contact mechanics
models [74,76,77]. Depending on the material of which tip and surface are made, all
sorts of physical forces, including magnetic and electrostatic forces, can contribute to
the contact stiffness. The different force models will not be discussed in detail here,
but it will be assumed that the surface preparation was such that elastic forces prevail.
Though in principle all types of forces can be measured by AFAM, predominance
of elasticity can be ensured by choosing high enough static loads applied by the
cantilever (several 100 nN).

Fig. 2.6. The sensor tip is in contact with the sample surface. A contact area of radius aC forms
between the tip and the surface and the tip senses forces lateral and normal to the sample surface
which are modeled by linear springs and dashpots
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The Hertzian model describes the contact between two nonconforming elastic
bodies of general anisotropy [78]. In the simplest case the bodies are mechanically
isotropic, the sample is considered as flat and the sensor tip is represented by
a sphere with a radius R. If a normal force Fn acts onto the sphere, a contact radius
aC forms:

aC = 3
√

3Fn R/4E∗ . (2.17)

If the adhesion forces are so small that they can be neglected, the normal force Fn

is given by the static deflection of the cantilever multiplied with the spring constant
of the cantilever. The sum of the indentation in the contacting bodies, δn, i.e. the
amount the two bodies approach is given by:

δn = 3

√
9F2

n

16RE∗2
, (2.18)

The normal contact stiffness k∗ is:

k∗ = 2aC E∗ = 3
√

6E∗2 RFn . (2.19)

Here, E∗ is the reduced Young’s modulus of the contact which is given by

1

E∗ =
(
1 − ν2

S

)
ES

+
(
1 − ν2

T

)
ET

, (2.20)

where ES, ET, νS, νT, are Young’s modulus and Poisson’s ratio of the surface
and the tip, respectively. After AFAM experiments, the tip shape often deviates
from that of a sphere [79]. In this case the shape of the tip can be described more
generally by a body of revolution. It has been shown that for axisymmetric indenters
on elastically isotropic half spaces the contact stiffness k∗, i.e. the derivative of
the applied load Fn with respect to the indention depth, δn , generally obeys the
equation [80]:

k∗ = dFn

dδn
= 2√

π

√
SE∗ (2.21)

Here S = π × a2
C is the contact area. Therefore the relation

E∗ = k∗/(2aC) , (2.22)

which can be derived from the Hertzian model, still holds in this more general case.
These formulas are derived on the assumptions of a frictionless contact. The Hertzian
model is only valid if the contact area is small compared with the dimensions of
the contacting bodies and their radii of curvature [78], which means that the contact
radius must be smaller than the tip radius aC � R. Linear elastic theory is only valid
if the mechanical stresses remain small enough. In AFM these two conditions are
easily violated when a sensor tip with a radius of a few nm contacts a metallic or
ceramic sample surface.
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The contact radius defines the lateral resolution in contact-resonance spec-
troscopy. A typical contact radius in AFM ranges from several nm up to several
tens of nanometers, depending on the tip radius and the elasticity of the tip and
the sample. Many polycrystalline materials like metals and ceramics, which appear
mechanically homogeneous on a macroscopic scale, show a local variation in elastic
constants for a scanning probe microscope because the tip senses the individual
grains within the polycrystalline aggregate. Each grain represents a small single
crystal. This means that imaging by AFAM can only be explained when the sample
surface is no longer treated as an isotropic material. Furthermore AFM sensor tips
made of single crystalline silicon are not elastically isotropic, and this holds for other
tip materials as well. Mechanically anisotropic materials are described by more than
two elastic constants. In the most general case of two non-conforming bodies of gen-
eral shape and anisotropy, the contact area is elliptical [78]. The reduced Young’s
modulus of the contact is a function of the indentation δn, contains combinations
of the elastic constants of tip and sample and cannot be separated into a sum of
a contribution from tip and surface like in (2.20). Vlassak and Nix examined the
indentation of a rigid parabolic punch in an anisotropic surface [81]. They showed
that the contact area remains spherical if a three- or fourfold rotational symmetry
axis perpendicular to the boundary exists. In this case (2.19) and (2.21) remain valid
if the isotropic reduced elastic modulus E/(1 − ν2) is replaced by an indentation
modulus that is calculated numerically from single crystal elastic constants [82].
Equation (2.20) is replaced by:

1

E∗ = 1

MS
+ 1

MT
(2.23)

where MS and MT are the indentation modulus of the sample and the tip, respectively.
The required symmetry holds for silicon sensor tips which are oriented in (001)
crystallographic direction. Because of its fourfold symmetry the tip does not alter
the rotational symmetry if it is in vertical contact with an isotropic body or with
a sample which also has a fourfold rotational symmetry axis along the tip and
indentation axis. Even for bodies which do not have a three- or fourfold symmetry
axis (2.23) can be used as a first approximation. The error made by application of
this equation depends on the anisotropy and can be estimated [83].

The tilt angle ϕ of the cantilever causes tip–sample forces tangential to the sur-
face when the surface is moved in its normal direction. Additionally, the flexural
vibrations cause an angular deflection ∂y/∂x at the sensor-tip position and conse-
quently a lateral deflection h∂y/∂x of the sensor tip apex. Tangential forces were
treated by Mindlin [78]. The lateral contact stiffness depends on the effective shear
stiffness G∗ of the contact:

k∗
Lat = dFL

dδL
= 8aCG∗ (2.24)

1

G∗ = 2 − νS

GS
+ 2 − νT

GT
(2.25)

where δL is the lateral contact deflection, and GS and GT are the shear modulus
of the sample and the tip, respectively. For isotropic bodies the ratio between the
normal contact stiffness k∗ and the lateral contact stiffness k∗

Lat is independent of the
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normal force Fn:

k∗
Lat

k∗ = 8aCG∗

2aC E∗ = 4G∗

E∗ . (2.26)

As Mazeran and Loubet pointed out [25], for ET � ES

k∗
Lat

k∗ ≈ 2(1 − νS)

2 − νS
. (2.27)

Taking a range of Poisson’s ratio from 0.1 for diamond to 0.5 for rubber, the ratio
of lateral and normal contact stiffness k∗

Lat/k∗ varies from 2/3 to 18/19 with an
average value of 0.85 [25]. Like in the case of the normal contact stiffness, it will be
necessary in future to calculate shear stiffness, taking into account the mechanical
anisotropy of the contacting bodies.

An important question for nondestructive testing is whether techniques like
AFAM or UAFM are able to detect sub-surface features. The typical frequency f
of ultrasonic excitation is 100 kHz to 10 MHz. The velocity of longitudinal acoustic
waves in the solids under examination ranges typically from v = 1 mm/µs (poly-
mers) to v = 10 mm/µs (ceramics). In this case the acoustic wavelength λ = v/ f
ranges from 100 µm to 10 cm. Consequently the acoustic wavelength is larger than
the scan width of the AFM and orders of magnitude larger than the contact radius.
This confirms that the vibrating tip can be seen like a dynamic indenter and the pen-
etration depth of the ultrasonic techniques is given by the decay of the mechanical
stress field in the sample.

According to the Hertzian contact model the decay length is several multiples
of the contact radius (see Fig. 2.7). Therefore it is possible to measure the film
thickness with AFAM or UAFM [57], provided the films are thin enough. Yaralioglu
et al. calculated the contact stiffness of layered materials using the impedance of
a mechanical radiator [58]. They examined thin films of photo resist, W, Al, and
Cu on silicon single crystal. They were able to show that in the low frequency
limit ( f → 0) the impedance method provides the same results for the contact
stiffness k∗ as the Hertzian contact model and that this method is well suited to

Fig. 2.7. Mechanical stress field in a Hertzian contact as a function of penetration depth z into the
surface. The average normal pressure pn in the contact area is given by pn = Fn/πa2

C, where Fn
is the normal force and aC is the contact radius. The compressional stresses σz and σr have their
maximum at the surface and the principal shear stress τ1 reaches its maximum in the sample [78]
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calculate the influence of subsurface defects on the contact stiffness [84]. Tsuji
et al. observed subsurface dislocation movement in graphite with UAFM. They
calculated the influence of a subsurface layer with lower Young’s modulus on the
contact stiffness using finite elements [85–88]. The penetration depth of the me-
chanical stress field can be enhanced by increasing the contact radius, however,
this causes a loss in lateral resolution. According to Fig. 2.7 the compressional
stress has its maximum at the sample surface, while the shear stress reaches its
maximum below the surface. Therefore techniques which exploit lateral vibrations
like torsional contact-resonance spectroscopy should be very sensitive to subsurface
defects.

2.4
Characteristic Equation of the Surface-coupled Beam

In the linear model shown in Fig. 2.8 the forces between the sensor tip and the surface
are represented by a system of springs and dashpots. The length of the cantilever
from the clamped end to the free end is L. The sensor tip is located at position L1

and L2 = L − L1 is the distance between the tip position and the free end. Again,
one seeks a harmonic solution in time. Two sections of the cantilever with individual
solutions for the mode shapes, y1(x1) and y2(x2), respectively, are defined. The
function y1(x1) describes the amplitude of the section which begins at the clamped
end at x = 0 and ends at the tip position at x = L1. For simplicity one can use y(x)
instead of y1(x1), because the two functions are identical on the first section of the
beam. The function y2(x2) begins at the free end of the beam and ends at the tip
position at x2 = L2. At the clamped end of the beam the deflection and the slope of

Fig. 2.8.Linear model of the cantilever when the sensor tip is in contact with a sample surface. The
tip–sample interaction forces are represented by springs and dashpots. The cantilever is tilted
by an angle ϕ with respect to the surface. The sensor tip of height h is located at a position L1
on the length axis of the cantilever. The distance of the tip to the free end of the cantilever is L2
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the beam must be zero, while at the free end of the beam the forces and moments
have to be zero. The end conditions for y(x) and y2(x2) are therefore:

x = 0 :
⎧⎨⎩y(x) = 0

∂y(x)

∂x
= 0

y = L :

⎧⎪⎪⎨⎪⎪⎩
∂2 y

∂x2
= 0

∂3 y

∂x3
= 0

. (2.28)

The solution (2.3) and its derivatives together with the foregoing end conditions
yield A1 = A3 = 0 for y(x) and A2 = A4 = 0 for y2(x2). The shape functions
therefore have the form:

y(x) = A2(cos αx − cosh αx) + A4(sin αx − sinh αx)

y2(x2) = A1 (cos αx2 + cosh αx2) + A3 (sin αx2 + sinh αx2) . (2.29)

The partial solutions y(x) and y2(x2) must be coupled continuously at the tip
position at x = L1 i.e. at x2 = L2.

x = L1 or x2 = L2 :
⎧⎨⎩y(x) = y2(x2)

∂y(x)

∂x
= −∂y2(x2)

∂x2

(2.30)

The negative sign in the equation for the derivatives appears because the x2-axis is
defined in the negative direction of the x-axis. This direction was only chosen for
convenience of calculation. Note that the x-axis (and the x2-axis) of the cantilever
is not parallel to the surface when the cantilever is tilted by an angle ϕ as shown
in Fig. 2.8. In this text the terms “y-axis” and “x-axis” always correspond to the
coordinate system of the cantilever. The moments and the forces on the sensor tip
lead to further boundary conditions at the coupling position. One can first consider
a simplified case where the x-axis of the cantilever is parallel to the sample surface
and only forces normal to the surface are acting (ϕ = 0, k∗

Lat = 0, and γ = 0). The
boundary condition for the shear forces at x = L1 is in this case:

EI
∂3 y

∂x3
+ EI

∂3 y2

∂x3
2

= k∗y(L1, t) + γ
∂y(L1, t)

∂t
. (2.31)

The solution looked for is a harmonic wave of the form y(x, t) = y(x) exp(iωt). The
time derivatives can therefore be calculated and reformulated using the dispersion
relation (2.6) neglecting the air damping. This leads to the boundary condition

∂3 y

∂x3
+ ∂3 y2

∂x3
2

= 1

EI
· (k∗y(L1, t) + γ iωy(L1, t)

)
= y(L1, t)

(
k∗

EI
+ γ iα2

√
1

EIρA

)
. (2.32)

A contact function φ(α) is defined, which contains contact stiffness and contact
damping:
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φ(α) = 3
k∗

kC
+ i(αL1)

2 p . (2.33)

The spring constant kC of the cantilever (2.13) was used. The dimensionless damping
constant p is defined as [70]:

p = L1γ√
EIρA

= L1

L

3γ

(1.875)2m∗ω0
= L1

L

(1.875)2γ

mω0
. (2.34)

Substituting the contact function φ(α) in (2.31), the boundary condition now be-
comes

∂3 y

∂x3
+ ∂3 y2

∂x3
2

= φ(α)

L3
1

y(L1) . (2.35)

In the same way a lateral contact function φ(α)Lat is defined:

φLat(α) = 3
k∗

Lat

kc
+ i(αL1)

2 pLat pLat = L1γLat√
EIρA

. (2.36)

The angle ϕ of the cantilever with relation to the surface causes cross-coupling
between lateral and normal signals. Forces Fx in length-direction of the beam
acting on the sensor tip give rise to a moment M = hFx at the end of the
beam. The angular deflection ∂y/∂x of the beam at the tip position causes a de-
flection in x-direction h∂y/∂x of the tip apex. In summary, this leads to the
following boundary conditions for the forces and the moments at the tip posi-
tion:

x = L1 or x2 = L2 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2 y(x)

∂x2
− ∂2 y2(x2)

∂x2
2

= −T(α)
∂y(x)

∂x
− X(α)y(x)

∂3 y(x)

∂x3
+ ∂3 y2(x2)

∂x3
2

= U(α) · y(x) + X(α)
∂y(x)

∂x

.

(2.37)

The auxiliary functions T , X and U are defined as follows:

T(α) = h2

L3
1

φ(α) sin2 ϕ + h2

L3
1

φLat(α) cos2 ϕ

X(α) = h

L3
1

sin ϕ · cos ϕ [φLat(α) − φ(α)]

U(α) = 1

L3
1

φ(α) cos2 ϕ + 1

L3
1

φLat(α) sin2 ϕ . (2.38)

The four boundary conditions at the coupling position are used to determine the
four unknown constants in the shape functions y(x) and y2(x2). The solutions of this
eigenvalue problem define an infinite set of discrete wave numbers αn . After some
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pages of calculation one obtains the following characteristic equation:

Ω(α) ≡ S4 + S3T(α) + S2 X(α) + S1U(α) + S0
[
T(α)U(α) − X2(α)

] = 0
(2.39)

where S0, S1, S2, S3, and S4 stand for the following terms:

S0 = (1 − cos αL1 cosh αL1)(1 + cos αL2 cosh αL2)

S1 = α [−(1 − cos αL1 cosh αL1)(sin αL2 cosh αL2 − sinh αL2 cos αL2)

+ (1 + cos αL2 cosh αL2)(sin αL1 cosh αL1 − sinh αL1 cos αL1)]

S2 = 2α2[sin αL1 sinh αL1(1 + cos αL2 cosh αL2)

+ sin αL2 sinh αL2(1 − cos αL1 cosh αL1)]

S3 = α3 [(sin αL1 cosh αL1 + sinh αL1 cos αL1)(1 + cos αL2 cosh αL2)

− (sin αL2 cosh αL2 + sinh αL2 cos αL2)(1 − cos αL1 cosh αL1)]

S4 = 2α4(1 + cos αL cosh αL) (2.40)

The last term in the characteristic equation (2.39) can be further simplified by
substituting the definitions of the auxiliary functions:

T(α)U(α) − X2(α) = h2

L6
1

φ(α)φLat(α) (2.41)

2.4.1
Discussion of the Characteristic Equation

In order to understand the characteristic equation of the surface-coupled beam, it
is helpful to consider simple cases. If for example all the spring constants and the
dashpot constants are set to zero, the auxiliary functions T(α), X(α), and U(α)

become zero too. This means that all terms except S4 vanish in Ω(α) and the
characteristic equation reduces to (2.7) which is the equation of the clamped-free
beam.

As a next step one can consider only a normal spring k∗, the lateral spring
constant and the contact damping are still considered to be zero. This means that
the contact function and the lateral contact function become φ(α) = 3k∗/kC and
φLat(α) = 0, respectively. If in addition the beam is not tilted (ϕ = 0), and if the tip
is located at the end of the beam (L1 = L and L2 = 0), the auxiliary functions X(α)

and T(α) vanish and U(α) simplifies to U(α) = φ(α) = 3k∗/kC. The characteristic
equation for a clamped-spring-coupled beam [13, 44] then follows:
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(αL)3 (1 + cos αL cosh αL) + 3
k∗
kC

(sin αL cosh αL − sinh αL cos αL) = 0

(2.42)

Two examples of the shape function y(x) of this case are shown in Fig. 2.9. Note that
(2.42) contains the characteristic equation of the clamped-free beam and the charac-
teristic equation of the clamped-pinned beam, combined by the factor (αL)3kC/3k∗.
The clamped-pinned case is reached when the normal contact stiffness k∗ goes to
infinity.

Starting from the clamped-pinned case one can now add a lateral spring which
causes feedback forces proportional to the angle of the end of the beam. A lateral
spring fixed to the sensor tip is equivalent to a torsional spring which is fixed directly
to the end of the beam [25]. The characteristic equation of this case can be obtained by
dividing (2.39) by U(α) and subsequently considering the case U(α) → ∞. From the
remaining terms S1 + S0T(α) = 0 one obtains the following characteristic equation:

3
h2k∗

Lat

L2kC
(1 − cos αL cosh αL) + αL (sin αL cosh αL − sinh αL cos αL) = 0

(2.43)

Finally, when the lateral spring constant too goes to infinity, one obtains a cantilever
which is clamped at both ends. The simplified cases of the characteristic equation
discussed above are shown in Fig. 2.9. Furthermore, the shapes of the first (n = 1)
and the third (n = 3) mode are shown. In the spring-coupled cases, the mode shapes
change continuously with the contact stiffness, Fig. 2.9 shows one example of normal
contact stiffness and one of lateral contact stiffness. Other special cases of the char-
acteristic equation (2.39) were published in literature [44,60,89]. The characteristic
equation for a beam with normal and lateral springs at the end at x = L was first
published by Wright and Nishiguchi. [89].

The continuous change in mode shape as a function of contact stiffness is ac-
companied by a continuous change in resonant frequency. The lines labeled “A” in
Fig. 2.10 show the resonant frequencies of the first four flexural modes as a function
of normalized contact stiffness k∗/kC for the clamped-spring-coupled beam (2.42).
In this case the contact-resonance frequencies of the n’th mode are always lower
than the free resonant frequency of the subsequent mode (n + 1). The gaps in the
spectrum between the clamped-pinned mode and the next clamped-free mode are
shown as grey areas. If the sensor tip is moved away from the end of the beam
(L2 > 0), the maximum possible frequency shift increases. The case of a relative
tip position L2/L = 5% is shown as lines “B” in Fig. 2.10. If it happens for a mode
that the distance of its last vibration node to the end of the beam becomes equal
to or larger than the distance of the tip to the end, L2, this mode merges with the
next higher mode and the situation becomes difficult to survey. As the wavelength
decreases with increasing mode number, there are always higher modes for which
this limit is surmounted. In the experiments it is therefore better to evaluate only
modes for which the wavelength is greater than L2.

A torsional spring at the end of the beam (lines “C” in Fig. 2.10) also in-
creases the shift of the resonant frequencies to higher values, such that the gaps
in the spectrum disappear. The approximations for large n in Table 2.1 show that
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Fig. 2.9. Characteristic equations for some selected simple cases of the cantilever in flexural
vibration. The shape functions y(x) for the first flexural mode (n = 1) and the third mode
(n = 3) are shown

the frequency of the (n + 1)’th clamped-free mode equals the frequency of the
n’th clamped-clamped mode. In a real experiment there will always be normal
and lateral forces at the same time. However, even if the lateral contact stiffness
is of the same size as the normal contact stiffness, its influence on the cantilever
vibration is smaller than the influence of the normal stiffness, due to the factor
h2/L2 which appears in the characteristic equation. The lateral forces are trans-
formed into a moment by the lever-arm h of the sensor tip which is shorter than
the cantilever length L. Typical sensor tip heights h are 5–15 µm, typical cantilever
lengths L are 100–400 µm, i.e. h2/L2 ranges from 0.15 to 0.0125. As a conse-
quence, the lateral contact stiffness influences the frequency little if the normal
contact stiffness k∗ is low compared to the spring constant of the cantilever kC. At
higher contact stiffness k∗ the frequency shift comes closer to its upper limit, and
the influence of the lateral contact stiffness k∗

Lat becomes remarkable. It was first
pointed out by Mazeran and Loubet [25] that the influence of the lateral contact
stiffness k∗

Lat is high when the ratio of the normal contact stiffness to the spring
constant of the cantilever k∗/kC is high. As a consequence, lateral forces may not
be neglected if contact resonances are measured with soft sensor beams on stiff
surfaces.
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Fig. 2.10. Shift of the normalized resonant frequencies fn/ f0 of the first four flexural modes as
a function of normalized contact stiffness k∗/kC. The lines labeled “A” show the case when only
a spring normal to the sample surface is fixed to the cantilever. In case “B” the normal spring is
fixed slightly away from the free end of the cantilever. In case “C” lateral tip–sample forces act
additionally to the normal forces. A constant ratio between lateral and normal contact stiffness
was assumed (k∗

Lat/k∗ = 0.85)

Dupas et al. [60, 90] calculated the characteristic equation for the complete
model shown in Fig. 2.8 with an additional spring at the clamped end of the can-
tilever. They examined the influence of the position and of the length of the sensor
tip on the frequency shift of the first flexural mode. Arinero and Lévêque [26]
calculated the contact vibrations of a beam with finite elements and examined
the influence of the tip among other parameters. Wu et al. examined the in-
fluence of the length of the sensor tip on the frequency shift of the vibration
modes [91].

2.4.2
Influence of an Additional Mass

An additional point-mass mL on the cantilever shown schematically in Fig. 2.11
causes an inertial force proportional to −ω2mL. The influence of the mass can be
found out easily if it is located at the tip position x = L1 on the length axis of
the beam [44, 92]. In this case the auxiliary function U(α) (2.38) in the boundary
conditions (2.37) changes. If the center of gravity of the mass is displaced by ε from
the middle plane of the beam, a moment proportional to −ε2ω2mL [92] has to be
added in the auxiliary function T(α). The form of the characteristic equation as well
as the auxiliary function X(α) remain unchanged. With the help of the dispersion
relation (2.6) one obtains:

T(α) = h2

L3
1

(φ(α) sin2 ϕ + φLat(α) cos2 ϕ) − ε2

L3
1

mL

m
(αL1)

4

U(α) = 1

L3
1

(φ(α) cos2 ϕ + φLat(α) sin2 ϕ) − 1

L3
1

mL

m
(αL1)

4 (2.44)
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Fig. 2.11. An additional point mass mL is located on the cantilever at x = L1. The mass is
displaced by ε from the middle plane of the beam indicated by the chain dotted line

It was assumed that ρAL1 ≈ m, where m is the mass of the cantilever. This is a good
approximation if the sensor tip is located close to the end of the beam. Without
lateral forces, with a tip at the end of the beam (L2 = 0), without tilt (ϕ = 0), and
without damping one obtains the characteristic equation derived by Muraoka [92]:

3
k∗

kC
− mL

m
(αL)4 +

(αL)3 [(1 + cos αL cosh αL) − ε2

L2
mL
m (αL)3

(sin αL cosh αL + sinh αL cos αL)]
sin αL cosh αL − sinh αL cos αL

− ε2

L2
mL
m (αL)3 (1 − cos αL cosh αL)

= 0 (2.45)

This equation was used to calculate the frequency shift in Fig. 2.12a. With increasing
additional mass the cantilever behaves more and more like a point-mass oscillator.
The frequency shift of the point-mass oscillator is according to (2.16):

f

f0
=
√

1 + k∗

kc
(2.46)

This behavior is shown in Fig. 2.12 as a dashed line (p1). In case of an additional
mass at x = L the point-mass model predicts the following frequency shift:

f

f0
=
√

1 + k∗

kc
·
(√

1 + 4
mL

m

)−1

(2.47)

An additional mass increases the effective mass of the beam and lowers its first free
resonant frequency. The frequency shift according to the point-mass oscillator with
additional mass (2.47) is labeled (p2) in Fig. 2.12. If the additional mass is high
enough (mL/m = 5) there are sections of the dispersion curves of the beam which
coincide with the point-mass model. If contact-resonance frequencies are measured
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Fig. 2.12. Influence of an addi-
tional mass mL on the frequency
shift of the contact-resonance
frequencies (a) without lateral
forces ( displacement of the mass
ε = 0, mL/m = 5, position
of the mass L1/L = 1) [92],
(b) with lateral forces (position
L1/L = 0.9, ratio of lateral
contact stiffness to normal con-
tact stiffness k∗

Lat/k∗ = 0.85,
beam angle ϕ = 11◦, cantilever
length divided by tip height L/h
= 15, mass displacement ε = 0,
mL/m = 5). The dashed lines
show the frequency shift of the
equivalent point-mass oscillator
without additional mass (p1) and
with additional mass mL (p2)

and evaluated which lie on these sections, the simple point-mass formulas can be
used to calculate the normalized contact stiffness k∗/kC from the contact-resonance
frequencies [92]. Muraoka observed an improved contrast when he used a cantilever
with a W-particle glued onto its end for imaging in AFAM [93]. The characteristic
equation with the additional mass can also be used to calculate the influence of the
sensor tip on the vibration modes. For most commercial cantilevers, however, the
influence of the mass of the tip is negligible.

2.4.3
Roots of the Characteristic Equation with Damping

In the discussion of the characteristic equation the influence of the contact damping
has not been considered so far. In a simplified case without lateral forces and tilt of
the beam, the characteristic equation becomes [70]:

(αL)3 (1 + cos αL cosh αL) +
(

3
k∗

kC
+ i(αL)2 p

)
× (sin αL cosh αL − sinh αL cos αL) = 0 (2.48)

The solutions αn L of this equation are complex numbers. The influence of the
contact damping on the real part and the complex part of the wave number is shown
in Fig. 2.13 [70]. The shapes of the first three modes in the case of a ratio of the
normal contact stiffness to the spring constant of the cantilever k∗/kC = 10 and
without contact damping (p = 0) are shown as insets. With increasing contact
damping p mode 1 shows stiffening behavior, i.e. the frequency increases, while
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Fig. 2.13. Influence of the
dimensionless contact
damping p on the first
three modes in the case
k∗/kC = 10. The real
part (filled symbols)
and the imaginary part
(open symbols) of the
eigenvalues αn L are
plotted as a function
of p

mode 2 shows softening behavior. Both modes have a maximum of the imaginary
part of the wave number in the frequency interval where the real part of αn L changes
strongly. Note that the horizontal scale in Fig. 2.13 is logarithmic. The stiffness
of mode 2 decreases strongly, the imaginary part of αn L increases at first, then it
decreases again and in this part of the curve the absolute values of the real and the
imaginary parts are identical. A closer experimental and theoretical study of how
the vibration modes behave as a function of interaction damping could lead to new
techniques to measure tip–sample interaction damping or even internal friction at
sample surfaces.

2.5
Forced Vibration

Three types of excitation shown in Table 2.3 play an important role in AFM. (a) It
is possible to vibrate the clamped end of the cantilever harmonically in its thickness
direction with an amplitude uc(t) = u0eiωt (UAFM). (b) The sample surface is set
into normal vibration with an amplitude uS(t) = u0 eiωt(AFAM). (c) A concentrated
harmonic force F(t) = F0 eiωt – for example a magnetic force – acts directly on the
cantilever. The excitation signal is added to the boundary conditions. Afterwards
the general solution and its derivatives are substituted in the boundary conditions
and the constants A1, A2, A3 and A4 are calculated as a function of excitation
frequency. Table 2.3 shows a simplified situation with only a spring and a damper
at the end of the beam. The boundary conditions are in the AFAM mode, case
(b):

x = 0 :
{

y = a0
∂y

∂x
= 0

x = L :

⎧⎪⎪⎨⎪⎪⎩
∂2 y

∂x2
= 0

∂3 y

∂x3
= φ(α)

L3
(y − u0)

(2.49)
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From the first two boundary conditions one obtains A1 = A3 = 0, and with the third
boundary condition the shape function becomes:

y(x) = A2(cos αx − cosh αx) + A4(sin αx − sinh αx) (2.50)

From the last boundary condition the constants A2 and A4 are calculated:

A2 = −u0φ(α)

2N(α)
(sin αL + sinh αL) A4 = u0φ(α)

2N(α)
(cos αL + cosh αL) (2.51)

The denominator of the two constants in the foregoing equations is the same:

N(α) = (αL)3(1 + cos αL cosh αL) + φ(α)(cosh αL sin αL − sinh αL cos αL)

(2.52)

The complex amplitude of vibration is obtained by substituting (2.51) and (2.52) in
(2.50):

y(x) = u0φ(α)

2N(α)
[−(sin αL + sinh αL)(cos αx − cosh αx)

+ (cos αL + cosh αL)(sin αx − sinh αx)] (2.53)

The detector, for example the laser spot of an interferometer, is usually located at
the end of the beam. In this case one only needs the amplitude at x = L, and (2.53)
simplifies to:

y(L) = u0
sin αL cosh αL − sinh αL cos αL

N(α)
(2.54)

Commercial atomic force microscopes are generally equipped with beam-deflection
sensors. Their signal is proportional to the angle of the cantilever, given by the
derivative of y(x). At the end of the beam at x = L the derivative is:

∂y

∂x

∣∣∣∣
x=L

= αLu0

L

sin(αL) sinh(αL)

N(α)
(2.55)

The boundary conditions and shape functions for the three mentioned cases of
excitation are shown in Table 2.3. The amplitudes and slopes in (2.54) and in (2.55)
are complex numbers. Real amplitude and phase Φ of the signals are calculated here
using:

|y(x)| =
√

Im[y(x)]2 + Re[y(x)]2 Φ(x) = − arctan
Im[y(x)]
Re[y(x)] (2.56)

The normalized vertical amplitude of the sensor tip dY0 and the normalized lateral
amplitude dX0 of the sensor tip are defined according to:

dY0 = |y(L)| /u0 dX0 = h

∣∣∣∣∂y

∂x
(L)

∣∣∣∣ /u0 (2.57)
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The lateral amplitude is the amplitude in x-direction, parallel to the length axis of the
cantilever. Note that the vertical and lateral amplitudes dY0 and dX0, respectively, are
only normal and lateral to the sample surface if the cantilever is not tilted (ϕ = 0).

Figure 2.14 shows examples of forced vibration calculated with the formulas in
Table 2.3 (a) and (b). The normalized vibration amplitude dY0 and the normalized
lateral vibration amplitude dX0 are shown for three different values of normalized
contact stiffness k∗/kC. The lateral amplitude, which is proportional to the beam-
deflection signal, becomes very small in the case k∗/kC = 10 for the first mode
and very high in the case k∗/kC = 100. The maxima are marked as (1) and (2)
in Fig. 2.14(c) and (d). Figure 2.15 shows the corresponding mode shapes y(x).
The shape of the first mode is similar to the shape of a pinned mode in the case
k∗/kC = 100. This leads to high lateral amplitude at the end of the beam and a strong
beam-deflection signal. In the case k∗/kC = 10 the lateral deflection becomes
almost zero at the end of the beam, and the first mode is hardly visible if a beam-
deflection sensor is used and if the laser spot is focused to the end of the beam. The
beam-deflection detector is most sensitive when the laser spot is located in one of
the nodes of the vibration mode. The first mode will therefore be detectable if the

Fig. 2.14. Forced vibration of a cantilever calculated with the formulas shown in Table 2.3 for
excitation at the clamped end and excitation by the sample surface. The vertical and lateral
amplitudes of the sensor tip dY0 and dX0, respectively, are shown for three different values of
contact stiffness. In Figs. (a) and (b) the vibration was excited at the clamped end (UAFM) and
in Figs. (c) and (d) the vibration was excited by sample surface vibration (AFAM). The damping
constants used for the calculation were Q1,free = 300 and γ/(m∗ω0) = 0.4
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Fig. 2.15. Shape functions y(x) of the modes corresponding to the peaks marked as (1) and (2) in
Figs. 5.1 (c) and (d). The spring and the dashpot representing the contact forces are not shown
here

laser spot is moved towards the middle of the beam. However, this decreases the
sensitivity of the detection system to static forces and there is the risk that a position
more in the middle of the beam corresponds to an antinode of one of the higher
modes.

All solutions in Table 2.3 have the same denominator N(α). The denominator
contains the characteristic equation (here the characteristic equation of the simplified
case without tilt of the cantilever and without lateral forces). In the case of low
damping the zeros of the denominator are the resonant frequencies of the system,
and the resonant frequencies are independent of the method of vibration excitation,
as can be seen in Fig. 2.16. The measured amplitudes, however, depend strongly
on the type of excitation, on the method of detection (amplitude or slope) and on
the position of the detecting laser spot on the length axis of the cantilever. In the
AFAM-mode one observes anti-resonances between the resonant frequencies where

Fig. 2.16. Vertical amplitude dY0 and lateral amplitude dX0 in the UAFM and AFAM mode.
The case of a normalized contact stiffness of k∗/kC = 10 was chosen. A measurement at the
end of the beam was assumed (x = L). The vertical lines show that the detected resonant
frequencies are independent of the type of excitation and also independent of whether one
detects the amplitude of the beam (equal to the vertical tip amplitude) or the slope of the
beam (proportional to the lateral tip amplitude) if the damping is low. The constants used
for the simulation were: Resonant frequency of the clamped-free beam f1,free = 150 kHz,
Q1,free = 300, contact damping γ/(m∗ω0) = 0.4
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Fig. 2.17. Amplitude (dashed line) and phase (continuous line) in the AFAM-mode (a) and in the
UAFM-mode (b). In the AFAM-mode (a) anti-resonances accompanied by a phase shift of −π

are observed. The data for the calculation were the same as in Fig. 2.16

Fig. 2.18. Forced vibration in the AFAM-mode. The lateral amplitude dX0 is shown. This signal
is proportional to the beam-deflection signal. (a) Influence of the position of the sensor tip (b),
influence of the lateral forces in the case of normalized contact stiffness k∗/kC = 100, contact
damping γ/(m∗ω0) = 0.4. (c) Influence of the position of the laser spot on the detected signal,
(d) influence of the lateral forces in the case k∗/kC = 1000, γ/(m∗ω0) = 2. For the lateral
forces in (b) and (d) a ratio of lateral to normal contact function φLat(α)/φ(α) = 0.85, an angle
ϕ = 11◦, and a ratio cantilever-length to tip-height of L/h = 15 was assumed
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the amplitude becomes zero and the phase shifts by −π (Fig. 2.17). This holds also
for the slope of the cantilever (not shown here).

The solutions for the forced vibration of the complete system according to
Fig. 2.8 including lateral forces and tip position can be found in the appendix. A few
examples of forced vibration are plotted in Fig. 2.18. The tip position influences the
resonant frequencies strongly in all cases, as can be seen in Fig. 2.18a. A shift of
the tip from the end position (L1/L = 1) to a position only 10% of the length of
the beam closer to the fixed end (L1/L = 0.9) leads to a dramatic change in the
spectrum. The lateral forces influence the spectrum less when the normal contact
stiffness divided by the spring constant of the cantilever is lower (k∗/kC = 100)
(b), and they influence the spectrum more when the normal contact stiffness is high
(k∗/kC = 1000) (d). The detector position influences the amplitudes of the measured
peaks (c). The first mode, which is not well visible with the beam-deflection sensor at
the end of the beam, is much better visible if the detector is located at x = 0.8L. The
resonance frequencies do not depend on the detector position, but the frequencies
of the anti-resonances depend strongly on the position of the detector on the length
axis of the beam. This was also pointed out by Arinero and Lévêque [26].

2.6
Imaging and Contrast Inversion

There are different possibilities to evaluate the contact resonances for imaging, as
for example amplitude or phase imaging. The cantilever-sample system is excited
with a frequency close to a contact resonance [62]. The contact-resonance frequency
must be higher than the upper cut-off of the feedback loop. The feedback loop of the
AFM works with the quasi static and low frequency components of the cantilever
signal and keeps the static deflection of the cantilever at a predefined value while
the surface is scanned. Parallel to the topography image the ultrasonic amplitude
or phase is measured for example with a lock-in-amplifier and displayed as a color
coded image. An example of a topography image and an ultrasonic amplitude image
of a piezoelectric ceramic is shown in Fig. 2.19. In the topography image the grains
of the polished sample surface can be seen. In the ultrasonic image substructures are
visible within the grains which are the ferroelectric domains. The contact stiffness
in AFAM and UAFM depends on the orientation of the domains [83, 94].

The contrast of the amplitude images depends strongly on the frequency of
operation [95,96] as shown in Fig. 2.20. If the frequency of operation is far from any
contact resonance, the contrast vanishes. If the frequency of excitation is lower than
the average contact-resonance frequency of the sample, regions with high stiffness
will cause lower amplitude of vibration than regions with low stiffness. And if
the frequency is higher than the average contact-resonance frequency the contrast
inverts. Experimental observation of contrast inversion is an indicator for a contact-
resonance frequency. It is recommended to operate above the contact-resonance
frequency if possible, because the images are more intuitive if surface areas with
higher stiffness show higher amplitude of vibration.

Imaging of samples with a high variation of Young’s modulus as for example
polymer samples with ceramic inclusions will lead to a shift of the contact-resonance
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Fig. 2.19. Topography-image (a) and AFAM amplitude-image (b) of a piezoelectric ceramic [82].
The size of the image is 10 × 10 µm2. The grey scale in the topography image covers 20 nm.
The spring constant of the cantilever was 41 N/m. The first two flexural resonant frequencies of
the clamped-free beam were 162 kHz and 1004 kHz. The ultrasonic amplitude image was taken
above the first contact-resonance frequency at 698 kHz. The white arrows point to a pore in the
ceramic surface

Fig. 2.20. Contrast inversion depending on the ultrasonic excitation frequency [95]. A smaller
section of the same surface as in Fig. 2.19 was imaged (a) at a frequency below the contact-
resonance frequency (695 kHz) and (b) above the contact-resonance frequency (699 kHz). The
large triangular domain in the middle of the image changes contrast when the frequency of
imaging is changed. The principle of contrast inversion is explained in the simulated spectra
below. Areas with higher contact stiffness lead to a higher contact-resonance frequency. The
dotted lines indicate schematically the frequency of operation below and above the average
resonant frequency. The white arrows point to the same pore as seen in Fig. 2.19. The ultrasonic
amplitude is always low and contrast inversion is not observed when the tip is on the pore.
The topography of the pore leads to a strong variation of contact stiffness and consequently to
a contact-resonance frequency much different from the flat areas of the sample
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frequency within one image amounting to several multiples of the half-width of the
resonant peaks. In this case it is no more possible to find a frequency which is close
to the contact-resonance maximum on both phases. Several contrast inversions may
happen within one image and the qualitative correspondence between amplitude and
stiffness is lost. Strong variations of contact stiffness are also caused by topographical
features. One such example can be seen in Fig. 2.20. If the tip is above the small
pore in the ceramic which is indicated by white arrows in Fig. 2.19 and Fig. 2.20,
the amplitude of vibration is low in both cases of excitation frequency. Probably,
the contact-resonance frequency of this area is much different from the contact-
resonance frequency of the flat surface regions.

The contrast in the amplitude images is caused by the shift of the contact-
resonance frequency with contact stiffness. Furthermore, the amplitude at contact
resonance varies with contact stiffness. The theoretical amplitudes at contact reso-
nance of the first three modes are shown in Fig. 2.21.

Amplitude or phase imaging is a convenient method to obtain qualitative images
of contact-stiffness variation. For quantitative evaluation, however, it is necessary
to measure the contact-resonance frequency in every pixel of the image. Kobayashi

Fig. 2.21. Vertical amplitude of the sensor tip dY0 and lateral amplitude dX0 at the contact-
resonance frequency of the first three flexural modes as a function of normalized contact stiffness.
A detector position at the end of the beam (x = L) was assumed and a low contact damping
(γ/(m∗ω0) = 0.4) was used for the calculation. The curves were obtained by taking the amplitude
maxima of simulated contact-resonance curves. All modes have local minima in the lateral
amplitude for contact stiffness values at which the slope of the shape function y(x) has local
minima at x = L
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Fig. 2.22. Topography, height scale 10 nm (a) and contact resonance AFAM-image (b) of
nanocrystalline nickel with an average grain size of 167 nm fabricated by pulsed electrodeposi-
tion. The sample was polished with diamond paste and alumina solution before imaging [119].
The grey scale of the contact-resonance image ranges from 730 kHz to 750 kHz. The size of the
images is 1.5 × 1.5 µm2

et al. developed a phased-locked-loop for the UAFM in order to follow the contact-
resonance frequency during imaging [97]. The technique was enhanced by ampli-
tude detection by Yamanaka et al. [98]. Fukuda et al. showed that the Q-control
technique [99] which was originally developed for tapping mode AFM can also
be applied in UAFM [100]. Fast computers and high storage capacities make it
possible to sweep spectra in every image point to track the contact-resonance fre-
quency [101, 102] or to save full vibration spectra in every image point (Solver and
Ntegra, NT-MDT, Moscow, Russia). The velocity of imaging is only limited by the
frequency of vibration and by the contact damping. If contact resonances between
100 kHz and 1 MHz are measured, an image of 128 × 128 pixels takes about half
an hour. Topography and contact-resonance frequency images of a nanocrystalline
nickel sample are shown in Fig. 2.22. The sample was polished before imaging. The
average grain size of the material was 167 nm.

2.7
Sensitivity of the Flexural Modes

The influence of the forces which act upon the sensor tip is different for different
modes because the mode shape and the wavelength depend on the mode number.
In case of quantitative evaluation, the frequency shift of the contact resonances is
relevant. The derivative ∂ f/∂k∗ was calculated analytically by Turner and Wiehn [65].
Normalized quantities marked with the symbol “∧” are used here to shorten the
calculations:

k̂ = k∗

kc
, k̂Lat = k∗

Lat

kc
, f̂ = f

f1,free
, (2.58)

and abbreviations for combinations of the trigonometric and hyperbolic functions
which appear frequently are introduced:
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ssh(x) = sin(x) sinh(x)

cch(x) = cos(x) cosh(x)

cch±(x) = 1 ± cos(x) cosh(x)

mix±(x) = sin(x) cosh(x) ± cos(x) sinh(x) (2.59)

The dimensionless wave number ψ is defined as ψ = αL. The characteristic equation
is a function of the wave number, the contact stiffness and the contact damping. The
characteristic equation (2.39) is rewritten in normalized quantities, and only the
dependency on the normalized contact stiffness k̂∗ is considered:

Ω
(
ψ(k̂∗), k̂∗

)
= 0 (2.60)

The derivative of this equation with respect to k̂∗ yields [65]:

dψ

dk̂∗ = − ∂Ω

∂k̂∗

(
∂Ω

∂ψ

)−1

(2.61)

If this formula is applied for example to the characteristic equation of the spring-
coupled cantilever (2.42) one obtains:

dψ

dk̂∗ = −3mix−(ψ)

3ψ2cch+(ψ) − ψ3mix−(ψ) + 6k̂∗ssh(ψ)
(2.62)

As the sensitivity is given by the shift of the resonant frequency and not by the shift
of the dimensionless wave number, the chain rule and the dispersion relation (2.10)
are used:

∂ f̂

∂k̂∗ = ∂ f̂

∂ψ

∂ψ

∂k̂∗
∂ f̂

∂ψ
= 2

ψ

(1.8751)2
(2.63)

Now, the sensitivity σ can be calculated:

σ = d f̂

dk̂∗ = −6ψmix−(ψ)

(1.8751)2[3ψ2cch+(ψ) − ψ3mix−(ψ) + 6k̂∗ssh(ψ)] (2.64)

To evaluate the sensitivity, the normalized wave number or the contact-resonance
frequency is first determined using the characteristic equation (2.42). Afterwards,
(2.64) is applied. The sensitivity of the first four flexural modes of the spring-coupled
cantilever is shown in Fig. 2.23. In the limit of vanishing contact stiffness (k̂∗ = 0)

the normalized wave number is ψ = 1.8751 and cch+(1.8751) = 0. Therefore the
sensitivity of the first flexural mode is in the limit k̂∗ = 0:

n = 1 : σ(k̂∗ = 0) = d f̂

dk̂∗

∣∣∣∣∣
k∗=0

= 6

(1.8761)4
≈ 0.5 (2.65)
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In general one obtains for the n’th mode in the limit k̂∗ = 0:

d f̂

dk̂∗

∣∣∣∣∣
k∗=0

= 6

(1.8761)2(ψn,free)2
(2.66)

For each value of the contact stiffness one can determine a flexural mode with highest
sensitivity. The approximate crossing points of the sensitivity curves in Fig. 2.23
are listed in Table 2.4. The higher the contact stiffness, the higher is the most
sensitive mode. The acoustic impedance at the sensor-tip position increases with
the mode number [70]. One can also say that the dynamic load which is imposed
by the cantilever onto the sample increases with increasing frequency proportional
m∗ω2 y(L) [27, 29]. However, the maximal value of the sensitivity σ ≈ 0.5 is only
reached by the first mode for small contact stiffness (k∗ → 0). This means that
the sensitivity can be improved by using higher modes, but the sensitivity of the
higher modes of a soft beam will be smaller than the sensitivity of the first mode

Fig. 2.23. Sensitivity σ of the first four flexural modes as a function of normalized contact
stiffness [65]. The dashed line shows the sensitivity according to the equivalent point-mass
model

Table 2.4. Linear model of the cantilever when the sensor tip is in contact with a sample surface.
The tip–sample interaction forces are represented by springs and dashpots. The cantilever is tilted
by an angle ϕ with respect to the surface. The sensor tip of height h is located at a position L1
on the length axis of the cantilever. The distance of the tip to the free end of the cantilever is L2

Mode number n 1 2 3

Slope at x = L becomes zero k∗/kC = 9.5 k∗/kC = 83 k∗/kC = 279
Mode (n + 1) becomes more k∗/kC ≈ 9.9 k∗/kC ≈ 69 k∗/kC ≈ 216
sensitive than mode n σ ≈ 0.09 σ ≈ 0.04 σ ≈ 0.02
Sensitivity of n’th flexural mode for σ = 0.485 σ = 0.077 σ = 0.028
k∗ → 0



76 U. Rabe

of a stiffer beam. Unfortunately, a stiffer beam makes the control of the static force
more difficult. As the static force is also an important parameter, the choice of the
optimal cantilever is always a compromise.

Using the Rayleigh–Ritz method, Turner and Wiehn calculated an approximate
formula for the sensitivity of the first five flexural and torsional modes [65]. This
solution can also be applied to cantilevers with variable cross-section as for example
V-shaped beams. The analytical formula of Turner and Wiehn was extended to
contact damping by Chang et al. [103]. They found that the contact damping reduces
the sensitivity of the modes for small values of contact stiffness k∗. Furthermore the
influence of lateral forces and tilt [104] and the length of the sensor tip [91] were
examined. As the contact stiffness depends on the radius of the sensor tip and the
Young’s moduli of tip and surface, it is not possible to calculate general formulas for
the sensitivity as a function of Young’s modulus of the sample. For such a calculation
one must assume a certain tip radius, elastic modulus and static force [96].

2.8
Quantitative Evaluation

The characteristic equation derived in Chap. 4 can be solved for an analytical ex-
pression which describes the normalized contact stiffness k∗/kC as a function of
contact resonance. The ratio cP between lateral and normal contact function is de-
fined as:

cP = φLat(α)

φ(α)
(2.67)

Substituting the auxiliary functions X, T , U (2.38) in the characteristic equation
(2.39, 2.40), one obtains a quadratic equation in the contact function φ(α):

L4
1S4 + L3

1S3
h2

L2
1

φ(α)
[
sin2 ϕ + cP cos2 ϕ

] + L2
1S2

h

L1
φ(α) sin ϕ cos ϕ [cP − 1]

+ L1S1φ(α)
[
cos2 ϕ + cP sin2 ϕ

] + S0
h2

L2
1

φ2(α)cP = 0 (2.68)

The quadratic term in φ(α) vanishes if there are no lateral forces (cP = 0). If the can-
tilever is parallel to the sample surface (ϕ = 0), one obtains the following solution
for the contact function φ(α):

φ(α) = − L4
1S4

L1S1
= 2(αL1)

3cch+(αL)

cch−(αL1)mix−(αL2) − cch+(αL2)mix−(αL1)
(2.69)

In the experiment a contact-resonance frequency fCont is measured. If the resonant
frequencies of the free cantilever are known, the dispersion relation (2.10) contain-
ing the measurable quantities can be used to calculate the wave numbers from the
measured contact-resonance frequencies:

αL = αn,freeL√
fn,free

√
fCont = cn

√
fCont with cn := αn,freeL√

fn,free
(2.70)
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In case of small contact damping, its influence on the contact-resonance frequency
can be neglected, and the contact function reduces to φ(α) ≈ 3k∗/kC. One obtains an
analytical formula to calculate the normalized contact stiffness k∗/kC directly from
the contact-resonance frequencies [105].

k∗

kC
= 3

(cn
√

fn)
3cch+(cn

√
fn)

cch−(cn
√

fn L1/L)mix−(cn
√

fn L2/L)

−cch+(cn
√

fn L2/L)mix−(cn
√

fn L1/L)

(2.71)

However, the position of the sensor-tip is usually not known. If one measures the
contact-resonance frequencies of two flexural modes and assumes that the contact
stiffness is the same for both modes, one can calculate the sensor-tip position nu-
merically [105].

If lateral forces are considered, the quadratic equation must be solved:

φ(α) = g ±
√

g2 − L2
1

h2

L4
1S4

S0cP

g = −

L1S1(cos2 ϕ + cP sin2 ϕ) + L2
1S2

h
L1

(cP − 1) sin ϕ cos ϕ

+L3
1S3

h2

L2
1
(sin2 ϕ + cP cos2 ϕ)

2S0
h2

L2
1
cP

(2.72)

Here g is only an auxiliary quantity. In principle the normalized contact stiff-
ness k∗/kC can again be calculated if the contact damping is low. However, the
tilt angle ϕ of the cantilever, the height h of the sensor tip with relation to the
cantilever length L, and the ratio cP = φLat/φ ≈ k∗

Lat/k∗ of lateral to normal
contact constants must be known. The tilt angle ϕ is technically defined by the
cantilever holder in the AFM. The height of the sensor tip is usually specified
by the manufacturer of the commercial probes. The length of the cantilever beam
can be measured with an optical microscope. A more precise measurement of the
tip height is only possible with a scanning electron microscope. Instead of calcu-
lating the contact stiffness from the contact-resonance frequencies, one can also
use the formulas for the forced vibration and fit the experimental resonances to
the theoretical curves by parameter variation [60, 90]. Because of the various un-
known parameters, however, the error in the obtained contact stiffness values can be
high.

In contrast to the other parameters, the ratio between the lateral and the normal
stiffness cP is not a parameter of the instrument, but depends on the elastic constants
of the sensor tip, on the local elastic constants of the sample, and the other tip–sample
interaction forces. If cP is unknown, care should be taken to work in the range of
the dispersion curves where the influence of the lateral forces is low (see Chap. 4.1).
The lateral forces shift the resonant frequencies of the modes in a different way than
the normal forces. Therefore it should be possible to determine normal and lateral
contact stiffness by fitting the measured spectra to the simulated spectra. However,
up to now, as discussed in Chap. 2.3, real cantilever beams do not agree perfectly
with the analytical model. On the other hand, the lateral contact stiffness can in
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principle be measured if torsional or lateral contact-resonance experiments are made
at the same location of the sample.

2.8.1
Experiments for Quantitative Evaluation

For quantitative evaluation the resonant frequencies of the clamped-free beam are
needed. As far as the bandwidth is sufficient the free resonant frequencies can
be measured with the internal sweep programs of the commercial instruments.
Alternatively an optical interferometer as described in Chap. 2.3 can be used. Two
flexural modes are necessary at minimum. However, it is better to determine the
resonant frequencies of more flexural modes in order to test how much the cantilever
deviates from the model of the clamped-free beam. Then the sensor tip is brought
into contact with a sample and a predefined static deflection is set by the operator.
The contact-resonance frequencies of at least two modes are measured by sweeping
the frequency with the help of the AFAM or UAFM set-up described in Chap. 2.
The amplitude of excitation should be kept as small as possible in order to avoid
nonlinearities in the spectrum. As contact-resonance frequencies use to shift as
a function of applied load, variation of the applied static load helps to distinguish
contact resonances from other signals. An example of contact-resonance spectra of
three flexural modes and with three different static deflections of the cantilever is
shown in Fig. 2.24.

Fig. 2.24.Contact-resonance spectra measured with a silicon cantilever of 41 N/m spring constant
on a silicon single crystal [103]. The resonances of the clamped-free beam and contact resonances
of the first three flexural modes are shown. The static load for the contact resonances was 410 nN,
820 nN, and 1230 nN. It can be seen that all contact-resonance frequencies are higher than the
corresponding free resonance and that the contact-resonance frequencies increase with increasing
static load
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The sensor-tip position L1 on the length axis of the cantilever is then calculated
numerically. It is assumed that the normalized contact stiffness which is calculated
using (2.71) or (2.72) from the measured contact-resonance frequencies must be the
same for all contact modes if the static load is identical. If more than two modes
are measured, the obtained tip position will in most cases be different for each
pair of modes. These differences yield the systematic error in the normalized contact
stiffness k∗/kC which typically amounts to 20% up to 40% at present. The systematic
error is caused by the deviation of the real cantilever from the analytical model. After
having determined the normalized contact stiffness one has to apply a model for the
tip–sample force interaction to obtain an elastic constant of the surface.

An elastic constant of the sample surface can be calculated from k∗/kC using the
contact mechanical formulas (2.19) and (2.20) or (2.23), if the spring constant of the
cantilever, the normal load, and the elastic constants of the sensor tip and its radius
are known. Usually these constants are not known precisely enough, and reference
measurements on samples with known elastic constants are necessary. Figure 2.25
shows a sequence of measurements on two silicon single crystal surfaces with
different orientation [82]. A reproducible difference between the contact-resonance
frequencies of the two surfaces is visible, but also an average increase in the contact-
resonance frequencies and in the contact stiffness. The increase in contact stiffness
is caused by tip wear [62,79,106]. Often the contact-resonance frequency increases
strongly during the first measurements. A more stable situation is reached after
the tip has been rounded so much that the pressure in the contact area is reduced
sufficiently to stop further tip damage. The different symbols in Fig. 2.25 belong to
different static cantilever loads. As can be seen, the static force has a strong influence

Fig. 2.25. Sequence of contact-resonance measurements on two different silicon single crystal
surfaces of different orientation [82]. The contact-resonance frequencies of the first two flexural
modes are shown (a) and (b). Four different static loads of the cantilever, 420 nN, 840 nN,
1260 nN, and 1680 nN were chosen. The contact stiffness k∗ calculated from (a) and (b) is
shown (c). The cantilever made of silicon single crystal with the dimensions 120×30×2.8 µm3

(length × width × thickness) had a spring constant of 42 N/m. The first two clamped-free
resonant frequencies of the sensor were 287.96 kHz and 1596.37 kHz
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on the contact-resonance frequency. The shift of the contact stiffness as a function
of applied load can be used to estimate the shape of the sensor tip [56]. If the sensor
tip is broken, so that the end of the tip is flat, the contact-resonance frequencies do
not shift any more as a function of applied load. A flat tip could be an advantage,
because in this case the contact area would be constant and known. On the other
hand it is difficult to align a flat tip parallel to the sample surface.

By comparison of the normalized contact stiffness on the two samples, the
difference of the elastic constants can be calculated. When the normal load Fn and
the tip radius R are identical for a measurement on a sample of interest and on
a reference sample, one can conclude from the Hertzian model, (2.19):

E∗ = E∗
Ref ·

√
k∗3

k∗
Ref

3 (2.73)

Here E∗
Ref and k∗

Ref are the reduced Young’s modulus and the contact stiffness of the
reference sample, respectively. A simpler expression, E∗ = E∗

Ref · k∗/k∗
Ref, holds in

the case of a flat tip. The indentation modulus of the sample MS can be calculated
by solving (2.23): M−1

S = E∗−1 − M−1
T . In case of an isotropic sample with known

Poisson’s ratio the Young’s modulus follows directly from MS using (2.20). The
indentation modulus of the tip can be calculated from the elastic single crystal
constants of the tip material if they are known, or it can be measured using two
reference samples:

MT =
M1 M2

(
1 −

√
k∗3

1 /k∗3
2

)
M2

√
k∗3

1 k∗3
2 − M1

(2.74)

Here M1, M2, k∗
1, and k∗

2 are the indentation modulus and the contact stiffness of
reference samples 1 and 2, respectively. The steps for quantitative measurements are
summarized schematically in Fig. 2.26.

By comparison of the contact stiffness on two samples the difference in the
elastic constants can be determined. The elastic contact generates shear stresses and
compressional stresses in the tip and the sample. The anisotropy in the indentation

Fig. 2.26. Schematic list showing the measurements and steps of evaluation which are necessary
to obtain quantitative elastic constants of a sample surface
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modulus is therefore lower than the anisotropy in the Young’s modulus. It was
shown for silicon single crystal surfaces with two different orientations that the
measured difference in contact stiffness k∗ agreed with the difference in k∗ predicted
by the indentation modulus calculated from the elastic single crystal constants of
silicon [82]. Nanocrystalline ferrites [105], diamond like carbon thin films [79], and
clay minerals [107] were examined by contact-resonance spectroscopy. Figure 2.27
shows contact-resonance spectra on polystyrene, clay, mica and fused silica [107].
Polystyrene and fused silica were chosen as reference materials. Clay minerals fill
the pores between fused silica grains in sandstone. They influence the average elastic
constants of sand stone strongly, but measurement of their elastic constants is not
easy. With the AFAM-measurements it was possible to estimate the Young’s modulus
of the clay minerals. Dupas et al. imaged WC and Co-Phases in WC-Co Cermets and
examined NiTi-epoxy composites by contact-resonance spectroscopy. They obtained
quantitative results by fitting the measured spectra to simulations [60]. Hurley et al.
examined the elastic constant of a niobium film quantitatively by AFAM [64], and
Hurley and Turner investigated the influence of ambient humidity on quantitative
AFAM results [108].

Piezoelectric ceramics like BaTiO3 and PZT were investigated by AFAM and
the domain contrast was examined [83]. The indentation modulus of BaTiO3 ce-
ramics and PZT ceramics was calculated and compared to experiments [83]. Tsuji
et al. evaluated the stiffness of domain boundaries in piezoelectric material by
UAFM [109].

Up to the present, commercially available cantilevers have large tolerances in
their dimensions and they do not behave perfectly like a clamped beam. Therefore
reliable quantitative measurements are only possible if one chooses reference sam-
ples with elastic constants close to the constants of the sample of interest. In addition,
the error in the obtained values for the elastic constants depends on the control of
the static load. It is essential for the calibration by reference sample to compare
measurements that are made with the same normal load. In most commercial instru-
ments, however, there is no possibility to apply a calibrated force to the cantilever.

Fig. 2.27.Contact-resonance spectra on polystyrene, clay, mica and fused silica [104]. The spectra
of the first and the second contact-resonance frequency of a cantilever with a spring constant of
1.5 N/m are shown
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Fig. 2.28. Contact stiffness image of a nanocrys-
talline nickel sample. The contact stiffness values
were calculated from contact-resonance frequen-
cies. The size of the image is 1.5 × 1.4 µm2.
The spring constant of the employed cantilever
was 48 N/m and its free resonant frequencies
were 166 kHz and 1031 kHz for the first and the
second flexural mode, repectively

The force is applied indirectly by approaching the sample and the fixed end of the
cantilever. Due to the tilt of the cantilever with respect to the surface, the cantilever
buckles and the static bending depends on the normalized contact stiffness k∗/kC.
Because of the different amount of buckling identical static beam-deflection signals
do not correspond to identical normal loads Fn if the elastic constants of the samples
differ strongly.

With the new imaging techniques discussed in Chap. 6 it is possible to obtain
contact-resonance images instead of only amplitude images. From two resonant
frequency images of two different modes one can calculate a contact stiffness image
as shown in Fig. 2.28 and an indentation modulus image if reference measurements
are available [101, 102].

2.9
Nonlinear Forces

A simple force curve contains an attractive adhesive part and a repulsive elastic
part [110,111]. In AFM in air, adhesion forces caused by a water meniscus dominate
and drop almost to zero when the water meniscus breaks. When the amplitude of
vibration is slowly increased, the nonlinearity of the force is more and more sensed by
the AFM. The resonance curves develop a steep edge at the left side of the spectrum,
the maximum shifts to lower frequencies and an amplitude jump is noticed with
hysteresis when the direction of the frequency scan is inverted [62]. An example of
contact-resonance spectra measured with different amplitudes of excitation is shown
in Fig. 2.29.

It has been shown that the contribution of the local elasticity and the adhesion to
the contact forces can be separated by exploiting the amplitude dependence of the
resonant frequency, the so-called backbone curve [112]. In the regime of small non-
linearity, when the tip remains in contact with the sample surface during its vibration
cycle, the cantilever vibration behavior resembles that of a macroscopic Hertzian
contact oscillator [113]. The harmonic balance method [112] or the multiple scales
technique [74] can be applied to solve the equation of motion approximately. Am-
plitude jumps caused by bistability are typical for a nonlinear system with softening
behavior [114].

If the amplitude of surface vibration is increased, one can observe that the high
frequency amplitude of the cantilever first increases linearly. After a certain thresh-
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Fig. 2.29. Contact-resonance spectra showing the influence of the nonlinear forces [62]. (a) When
the excitation amplitude of the transducer is increased, the spectra become asymmetric and
develop a steep edge. (b) Hysteresis depending on the direction of the frequency scan

old, however, the minimum of the force curve is passed through during a vibration
cycle and the amplitude of vibration of the cantilever remains constant or even
decreases [115]. At the same time a DC offset of the cantilever develops, i.e. the
sensor tip lifts off the sample surface. In this amplitude region UFM and SAFM
are operating. At very high amplitudes the tip jumps so far away from the sample
surface that the water meniscus breaks and the interaction forces drop almost to zero
during a vibration cycle. The contact with the sample can now be considered as an
impact where the impact time is short compared to the period of oscillation. In this
regime subharmonics have been observed [116] and the ultrasonic mode resembles
the intermittent contact or tapping mode where the vibration is excited by the trans-
ducer in the cantilever holder. Different authors have examined the influence of the
nonlinear forces on the spectrum of the first flexural resonance in the tapping mode
and in the non-contact mode [117–119]. Recently Stark et al. applied a state-space
model to examine flexural vibration spectra in the tapping mode including the higher
modes [120].

2.10
Conclusions

Analytical models to describe flexural cantilever vibration for quantitative mea-
surement of elastic constants have been summarized in this article. Examples of
application by different research groups have been given.

The challenge in quantitative AFAM will be to manufacture and model sensors
in such a way that a characterization of every individual sensor by electron mi-
croscopy is not necessary. Furthermore, sensor tips with a well defined radius, a high
stiffness and a high resistance to breaking and wear must be developed. Imaging
techniques which acquire the contact-resonance frequency or full spectra in every
point of the surface are more favorable than mere amplitude or phase imaging. Such
techniques will make it possible to map local surface stiffness and contact damping
quantitatively. In cases where high local resolution is not required, the precision
of nanoindentation with regard to quantitative Young’s modulus will probably be
higher, because nanoindentation provides calibrated force measurements and forces
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normal to the surface. On the other hand, the development of contact mechanics
models for dynamic indentation is an active area of research, where nanoindentation
and the AFM-techniques can stimulate each other. The potential of the high fre-
quency AFM techniques like AFAM and UAFM is local resolution in the nm-range
which can in principle be achieved, the possibility of fast image acquisition and the
possibility to examine frequency-dependent phenomena. Furthermore, the measure-
ment of frequencies is an advantage, as it avoids difficult calibration of amplitude.
By combination of the results from different bending, lateral bending and torsional
modes, elastic constants in three directions relative to the sample surface can be
measured by AFM.

Nonlinear tip–sample forces such as friction and adhesion change the shape of
the resonance curves in a characteristic way. Quantitative evaluation of nonlinear
resonance curves is a still larger challenge than elasticity measurement. Numerical
modeling and absolute measurement of the vibration amplitudes of tip and sample
will be required in this case.
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A
Appendix

A.1
Definitions

In order to calculate the forced vibration for the model shown in Fig. 2.8, including
the angle ϕ of the cantilever, lateral forces, and tip position, abbreviations are defined
for combinations of the trigonometric and hyperbolic functions which are needed
frequently:

s±
1 = sin αL1 ± sinh αL1 s±

2 = sin αL2 ± sinh αL2

c±
1 = cos αL1 ± cosh αL1 c±

2 = cos αL2 ± cosh αL2

ssh1 = sin αL1 sinh αL1 ssh2 = sin αL2 sinh αL2

cch1 = cos αL1 cosh αL1 cch2 = cos αL2 cosh αL2

cch±
1 = 1 ± cos αL1 cosh αL1 cch±

2 = 1 ± cos αL ′ cosh αL ′

cch+
1+2 = 1 + cos α(L1 + L2) cosh α(L1 + L2)

mix±
1 = sin αL1 cosh αL1 ± cos αL1 sinh hαL1

mix±
2 = sin αL2 cosh αL2 ± cos αL2 sinh hαL2 (A.1)

As can be seen in Table 2.3, the formulas for the forced vibration excited by a con-
centrated force acting at the free end of the beam are very similar to the solutions in
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Table 2.3 case (b), excitation by surface vibration. Therefore only the UAFM-mode
and AFAM-mode are calculated here. In both cases, the calculation is based on
the equation of motion (2.1), the dispersion relation (2.5) and the solution (2.3).
The definitions of the contact functions φ(α) and φLat(α), the dimensionless con-
tact damping p and the auxiliary functions X, T , and U in (2.33)–(2.38) are not
repeated here. They can be taken from the main body of the text. As discussed in
Chap. 4, two functions y(x) and y2(x2) are defined for the two sections of the beam
from the clamped end to the tip position and from the free end to the tip position,
respectively.

A.2
UAFM-mode

In case of a vertical vibration of the clamped end of the beam the boundary conditions
are:

x = 0 :
{

(x) = u0
∂y(x)

∂x
= 0

x2 = 0 :

⎧⎪⎪⎨⎪⎪⎩
∂2 y2(x2)

∂x2
2

= 0

∂3 y2(x2)

∂x3
2

= 0

x = L1 or x2 = L2 :
⎧⎨⎩ y(x) = y2(x2)

∂y(x)

∂x
= −∂y2(x2)

∂x2

x = L1 or x2 = L2 :

⎧⎪⎪⎨⎪⎪⎩
∂2 y(x)

∂x2
− ∂2 y2(x2)

∂x2
2

= −T(α)
∂y(x)

∂x
− X(α)y(x)

∂3 y(x)

∂x3
+ ∂3 y2(x2)

∂x3
2

= U(α) · y(x) + X(α)
∂y(x)

∂x
(A.2)

By combining the functions y(x) andy2(x2) and the first four boundary conditions
one obtains:

y(x) = u0

2
(cos αx + cosh αx) + A2(cos αx − cosh αx) + A4(sin αx − sinh αx)

y2(x2) = A1(cos αx2 + cosh αx2) + A3(sin αx2 + sinh αx2) (A.3)

The remaining four boundary conditions together with these solutions lead to a linear
system of equations with four unknown constants A1, A2, A3 and A4. Solving the
linear system for the constants leads to:

A1 = u0

N(α)

{−2α5c−
1+2 − α4Tc+

2 s+
1 + α3 X

(
s+

2 s+
1 + c+

2 c−
1

) − α2Us+
2 c−

1

}
A2 = u0

N(α)

{
2α5ssh1+2 + α4T

(
ssh1mix+

2 + mix−
1 cch+

2

)
−2α3 X

(
ssh1ssh2 + cch1cch+

2

) + α2U
(
ssh1mix−

2 − mix+
1 cch+

2

)
−α(TU − X2)ssh1cch+

2

}
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A3 = u0

N(α)

{−2α5c−
1+2 − α4Ts−

2 s+
1 + α3 X

(−c+
2 s+

1 + s−
2 c−

1

) + α2Uc+
2 c−

1

}
A4 = u0

N(α)

{−2α5mix+
1+2 − α4T

(
2ssh1cch+

2 + mix+
1 mix+

2

)
−2α3 X

(
mix−

1 cch+
2 − mix+

1 ssh2
)}

(A.4)

With the common denominator N(α):

N(α) = 2{−2α5cch+
1+2 + α4T(mix+

2 cch−
1 − cch+

2 mix+
1 )

− 2α3 X(cch+
2 ssh1 + ssh2cch−

1 ) + α2U(mix−
2 cch−

1 − cch+
2 mix−

1 )

− α(TU − X2)cch+
2 cch−

1 } (A.5)

If the sensor tip is located at the end of the beam (L2 = 0), the constants and the
denominator simplify to:

A2 = u0

2N0(α)

{−α4ssh − α3Tmix− + 2α2 Xcch + αUmix+ + (TU − X2)ssh
}

A4 = u0

2N0(α)
{α4mix+ + 2α3Tssh + 2α2 Xmix− − 2αUcch

− (TU − X2)mix+}N0(α) = α4cch+ + α3Tmix+ + 2α2 Xssh

+ αUmix− + (TU − X2)cch− (A.6)

The amplitude and the slope at the end of the beam (x = L) are in this case
(L2 = 0):

y(L, α) = u0

N0(α)
{α4c+ + α3Ts+ − α2 Xc−}

∂y

∂x
(L, α) = α

u0

N0(α)
{α4s− − α2 Xs+ + αUc−} (A.7)

The forced vibration in the UAFM-mode with lateral forces and tilt of the cantilever,
but without variable tip position, was discussed in a publication [121]. Unfortunately,
there are several typewriting errors in the formulas in this publication. The correct
boundary conditions were published for example in [104].

A.3
AFAM-mode

In the case of vibration of the surface in its normal direction, one obtains components
of excitation in vertical direction (y-direction) and in lateral direction (x-direction)
in the coordinate system of the cantilever. The formulas derived here can also be
used for excitation of flexural modes by lateral surface vibration. The components
of excitation in the coordinate system of the cantilever need only to be changed in
this case. In case of normal surface vibration the boundary conditions are:



2 Atomic Force Acoustic Microscopy 87

x = 0 :
{

y(x) = 0
∂y(x)

∂x
= 0

y = L :

⎧⎪⎪⎨⎪⎪⎩
∂2 y

∂x2
= 0

∂3 y

∂x3
= 0

x = L1 or x2 = L2 :
⎧⎨⎩ y(x) = y2(x2)

∂y(x)

∂x
= −∂y2(x2)

∂x2

x = L1 or x2 = L2 :

⎧⎪⎪⎨⎪⎪⎩
∂2 y(x)

∂x2
− ∂2 y2(x2)

∂x2
2

= a0 − T(α)
∂y(x)

∂x
− X(α)y(x)

∂3 y(x)

∂x3
+ ∂3 y2(x2)

∂x3
2

= −b0 + U(α) · y(x) + X(α)
∂y(x)

∂x
(A.8)

With the components of excitation in the coordinate system of the cantilever:

a0 = −u0
h

L3
1

φLat(α) sin ϕ b0 = u0
1

L3
1

φ(α) cos ϕ (A.9)

Using the first four boundary conditions one obtains the following solutions for the
two sections of the cantilever:

y(x) = A2(cos αx − cosh αx) + A4(sin αx − sinh αx)

y2(x2) = A1(cos αx2 + cosh αx2) + A3(sin αx2 + sinh αx2) (A.10)

The constants are again calculated using the four boundary conditions at the tip
position and solving the linear system of equations for the constants A1, A2, A3, and
A4:

A1 = {−α3a0
[
c+

2 ssh1 + s+
2 mix+

1 + c−
2 cch−

1

] − α2b0
[
c+

2 mix−
1 + s+

2 ssh1

−s−
2 cch−

1

] + α (Xa0 − Tb0) c+
2 cch−

1 + (Xb0 − Ua0) s+
2 cch−

1

}
/N(α)

A2 = {−α3a0
[
mix+

2 s−
1 + ssh2c−

1 − cch+
2 c+

1

] + α2b0
[
mix−

2 c−
1 + ssh2s−

1

+cch+
2 s+

1

] + α (Xa0 − Tb0) cch+
2 c−

1 − (Xb0 − Ua0) cch+
2 s−

1

}
/N(α)

A3 = {
α3a0

[
c+

2 mix+
1 − s−

2 ssh1 − s−
2 cch−

1

] − α2b0
[−c+

2 ssh1 + s−
2 mix−

1

+c−
2 cch−

1

] + α (Xa0 − Tb0) s−
2 cch−

1 − (Xb0 − Ua0) c+
2 cch−

1

}
/N(α)

A4 = {
α3a0

[−ssh2s+
1 + mix+

2 c−
1 − cch+

2 s−
1

]
+α2b0

[−ssh2c−
1 + mix−

2 s+
1 − cch+

2 c+
1

]
+α (Xa0 − Tb0) cch+

2 s+
1 + (Xb0 − Ua0) cch+

2 c−
1

}
/N(α) (A.11)

The denominator N(α) is the same as in the UAFM-mode (A.5). If the position
detector is located at the end of the beam (x2 = 0), the solution simplifies to:

y2(0) = 2A1
∂y2

∂x2
(0) = −2αA3 (A.12)
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