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It has been demonstrated that the resonance frequency of the cantilever in atomic force modulation
microscopy can be used to study local mechanical properties. We developed a numerical method to
achieve mapping of the resonance frequency without significant modification of the device. By
making the assumption that the resonance spectrum can be approximated by a Lorentzian curve, we
established analytical expressions of the resonance frequency and the width of the curve �damping�
depending on the real and imaginary parts of the vibration at a single frequency. Then, resonance
frequency and damping images were produced from the recording of both the real and imaginary
part images of the complex amplitude. The results on a standard high-impact polystyrene sample are
shown. © 2007 American Institute of Physics. �DOI: 10.1063/1.2432264�

I. INTRODUCTION

The production of �visco�elastic images at the nanometer
scale has become a fairly routine operation: either in atomic
force modulation microscopy1 by recording amplitude �or
phase� variations or in the tapping® mode2 by observing a
phase contrast, which is still poorly understood. Currently,
the challenge is to quantify these images in terms of visco-
elastic moduli.

A method was commercialized a few years ago, under
the name of “force volume imaging,”3 that can be used to
record the force-distance curves F�d� on the entire investi-
gated zone. The elastic penetration of the tip into the sample
can be deduced thanks to a simple comparison with an F�d�
curve acquired on an infinitely stiff sample with respect to
the tip.4 It is then possible, using an appropriate contact me-
chanics theory, to quantify the produced images.5 Because
the data on cantilever stiffness and tip shape are not reliable
enough, this last method applies only to some particular
cases within suitable approximations. These cases are those
for which the tip penetrates strongly into the sample �as for a
nanoindentation experiment�, so that the apex contribution to
the elastic deformations is neglected in comparison with the
rest of the tip, whose shape is more easily estimated.

Another method combines nanoindentation and force
modulation microscopy:6 a diamond tip with a curvature ra-
dius of 250–600 nm is simultaneously submitted to a con-
stant force of about 2 �N and a sinusoidal force of about
1 �N. The excitation frequency is very low �10–250 Hz�.
The amplitude of displacement of the tip is small �linear
regime� and, depending on the sample stiffness, it varies
from 0.5 to 2 nm. Both amplitude and phase measurements
at the modulation frequency fmod are easily related to the
complex writing of the contact stiffness. Taking into account

the magnitude of the applied force in comparison with the
adhesion force, the Hertz contact model can be used to pro-
duce images of the so-called storage modulus E��fmod� and
loss modulus E��fmod�. This method has recently been com-
mercialized under the name of nanoDMA™ �nano dynamic
mechanical analysis7�.

Another interesting method was proposed by
Anczykowski et al.8 This approach consists of analyzing the
energy flow in the atomic force microscopy �AFM� system in
different dynamic modes, particularly in the tapping® mode.
Based on the hypothesis of a harmonic displacement of the
tip, it provides an easy-to-use result. Indeed, the energy
dissipated by tip-sample interactions can be directly obtained
by measuring quantities such as oscillation amplitude, fre-
quency, phase shift, etc. Furthermore, the authors proposed a
setup to map these local variations of dissipation while scan-
ning a sample surface. Applied to a polymer blend, the
resulting images can be correlated with different local vis-
coelasticities and also with local variations of stiffness.
Although this method is efficient to obtain a material con-
trast, it is not well adapted to the quantification of mechani-
cal properties.

In the vibrating contact mode achieved with an electro-
static excitation method,9,10 the resonance frequency and the
quality factor of the cantilever are sensitive to the viscoelas-
tic properties of materials. Both types of information are re-
lated to the contact stiffness �itself related to the viscoelastic
modulus of the sample surface� and they should be collected
to produce quantitative images. This method offers good spa-
tial resolution owing to small penetration depths. In addition,
the fact that the cantilever is working at the resonance fre-
quency acts as a supplementary inertial force to increase sen-
sitivity in comparison with �quasi�static methods. However, a
difficulty remains with the acquisition time. Recording the
spectrum and measuring the resonance frequency and the

a�Author to whom correspondence should be addressed; electronic mail:
arinero@lain.univ-montp2.fr

REVIEW OF SCIENTIFIC INSTRUMENTS 78, 023703 �2007�

0034-6748/2007/78�2�/023703/6/$23.00 © 2007 American Institute of Physics78, 023703-1

Downloaded 17 Mar 2007 to 133.28.47.30. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp

http://dx.doi.org/10.1063/1.2432264
http://dx.doi.org/10.1063/1.2432264
http://dx.doi.org/10.1063/1.2432264


quality factor is an operation which would require too much
time. Several authors have thus proposed resonance tracking
systems based on a phase-locked loop.11,12

In this article, we propose mathematical image process-
ing of the cantilever vibration parameters �the real and
imaginary parts� to directly produce the elastic and damping
images, without any significant modification in the atomic
force microscope device. As a demonstration, the experimen-
tal results on a high-impact polystyrene �HIPS� sample are
shown. HIPS is a polymer blend widely used in the automo-
bile industry. It is composed of polystyrene �PS� as the major
component and polybutadiene �PB� as the minor component.

II. THEORETICAL BACKGROUND

To understand the problem, it is easy to consider that the
cantilever-tip-sample system in atomic force microscopy can
be approximated by a spring-mass system in the linear elastic
regime, as presented in Fig. 1.

When a normal force F is applied on the tip, it penetrates
a distance � into the sample, which is called the elastic in-
dentation depth. The contact force gradient, also called nor-
mal contact stiffness, is given by kn=�F /��. Thus, we can
deduce in a first approximation that resonance frequency,
given by f0= �1/2����kl+kn� /meff, is related to the normal
contact stiffness.

However, it must be noted that the spring-mass model
does not predict exactly the true frequency response of the
system. We note, for example, that higher harmonics are not
taken into account. A better approximation is obtained with
the cantilever beam model coupled with a spring represent-
ing the contact stiffness13 or a finite element model.9

Now, let us analyze the normal contact stiffness. Accord-
ing to the Hertzian contact mechanics theories �Hertz and
Derjaquin-Muller-Toporov �DMT��,14,15 kn depends not only
on the reduced Young’s modulus E* but also on the contact
radius a: kn=2aE*, with E*= ��1−�t

2� /Et+ �1−�s
2� /Es�−1. Et

and �t �respectively, Es and �s� are Young’s modulus and
Poisson’s ratio of the tip �respectively, of the sample�. E* is
called the reduced modulus. It reflects the simultaneous elas-
tic deformations of the tip and the sample, which are sup-
posed to be isotropic. Knowing Et and �t, it is possible to
deduce the reduced Young’s modulus of the sample Es

*

=Es / �1−�s
2�. The contact radius verifies a=�R�, where R is

the curvature radius of the tip.
If we consider the response of a linear oscillator to a

harmonic excitation, the differential equation describing the
motion of the effective mass meff of both cantilever and tip is

d2x̃

dt2 + 2�
dx̃

dt
+ �0

2x̃ =
F0

meff
ej�t, �1�

x̃ = X0ej�tej�, �2�

where x̃ is the complex value of the response, �0 the
cantilever-tip-sample system’s resonance angular frequency,
� the damping coefficient, F0ej�t the harmonic excitation
force, and � the phase shift between the response and the
excitation. The resonance conditions can be found by solving
the simplified form of Eq. �1�,

X0ej� =
F0/meff

��0
2 − �2� + 2j��

, �3�

where f0, the resonance frequency of the system, is given by
f0=�0 /2�, and f1, the half-width at half-height of the spec-
trum, is given by f1=� /2�.

To take into account the transfer function of the elec-
tronic detection system,16 we introduce an empirical complex
constant C*,

C* = Cej�. �4�

The detected vibration can be represented by the complex
a+ jb=X0ej�. If we consider that f is close to f0, the first
order series approximation for expression �3� around f0 gives

a + jb =
C*

f0 − f + j f1
. �5�

Relation �5� assumes that the resonance spectrum is a
“Lorentzian” curve. If a real part a and an imaginary part b
are recorded at a single frequency f = f im �imaging fre-
quency�, from relation �5� we obtain

f0 = f im +
C�a cos � + b sin ��

a2 + b2 , �6�

f1 =
C�a sin � − b cos ��

a2 + b2 . �7�

Relations �6� and �7� can be used to produce, respectively, an
image of f0 and of f1. The elastic behavior of the sample can
be correlated with f0 and its damping behavior with f1.

III. MATERIAL AND METHOD

In order to test the method, the experimental results on a
HIPS sample are shown. HIPS is a polymer blend, composed
of PS as the major component and PB as the minor compo-
nent, that is widely used in the automobile industry. Our
sample was a thin film of an 80% PS–20% PB blend that was
deposited on a silicon wafer substrate. An interesting aspect
of this blend is that PS separates from PB, forming spheres at
the micrometer scale. The mechanical properties of the two
components are known: at ambient temperature PS, being
below its Tg�100 °C �glass transition temperature�, has a
glassy behavior and PB, being above its Tg�−90 °C, has a
rubberlike behavior. This would possibly permit us to obtain
great modifications in the cantilever’s resonance frequency
and resonance width, and images were expected with clearly
delimited zones.

FIG. 1. Spring-mass approximation for the cantilever-tip-sample system.
meff is the effective mass of both cantilever and tip, kl is the cantilever
stiffness, and kN is the sample stiffness.
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The device we used was a commercial AFM �Autoprobe
CP—Park Scientific Instruments� working in contact mode.
The commercial V-shaped cantilever �Ultrasharp CSC21A�
used for the experiments had a stiffness of k=0.12 N/m and
an attached W2C-coated tip in order to minimize its wear.17

The free first resonance frequency was obtained at 19.3 kHz.
The vibration was obtained by an electrostatic

excitation9,10 method and analyzed by a lock-in amplifier. A
conductive sample holder, isolated from the piezoelectric
tube scanner, was polarized by a sinusoidal potential. The
cantilever was attached to the ground and it thus vibrated
thanks to an electrostatic pressure actuation. Then, the con-
tact force between the tip and the sample was modulated.
The feedback of the microscope maintained the mean contact
force Fapp constant during the scan. It was thus possible to
acquire simultaneously a topographic image. When the exci-
tation frequency was close to the natural frequency of the
cantilever, a resonance occurred. It is generally accepted that
for small deflections, the photodetector signal is directly pro-
portional to the cantilever deflection. This signal was ana-
lyzed by lock-in amplification to extract the real part and the
imaginary part of the complex amplitude of vibration. In
order to achieve the frequency sweep and resonance spectra
acquisitions, an automated measurement was realized using
LABVIEW®.

IV. EXPERIMENTAL RESULTS

As mentioned above, the contact stiffness depends not
only on the elastic modulus of the sample but also on the
contact radius a. When the applied load was increased, a
became greater and the resonance frequency increased. We
also observed a widening of the curves in such a situation. In
the following, all experiments were made at an average ap-
plied load of Fapp=0 nN. This value was chosen for two
reasons: to obtain comparable measurements �and no applied
load-dependent measurements� and to optimize spatial
resolution.

First of all, we determined the empirical complex con-
stant C*=Cej�. The cantilever’s resonance spectra in contact
with PS and PB were recorded, as shown in Fig. 2. We mea-
sured f0PS

=93.4 kHz, f1PS
=1.7 kHz, f0PB

=88.2 kHz, and
f1PB

=2.5 kHz. The experimental amplitude X0 vs frequency f
was fitted by a Lorentzian curve according to relation �5�,

X0�f� = � C

f0 − f + j f1
� . �8�

Adjustments for the two materials agreed for C�9.5	104.
In the complex plane, the points �a�f� ,b�f�� are given by

relation �5�. They describe a circle. Far from resonance,
these points theoretically tended towards the never-reached
origin point �0,0�, i.e., the circle was never closed. At reso-
nance, �a�f0� ,b�f0�� was always diametrically opposed to the
origin. Without taking into account the electronics’ transfer
function of the system, we had a�f0�+ jb�f0�=−jC / f1. Thus,
�a�f0� ,b�f0�� was located on the ordinate axis. Practically,
when the electronics’ transfer function was taken into ac-
count, a�f0�+ jb�f0� was no longer imaginary and we gener-
ally observed a rotation of the theoretical circle by an angle
�. The theoretical and experimental complex plane circles
are presented for comparison in Fig. 3�a�. For our applica-
tion, experimental points were fitted with �=200°, as shown
in Fig. 3�b�. Then, we obtained C*�9.5	104ej200. Figures
4�a� and 4�b� are, respectively, images of the real part a and
the imaginary part b at an intermediate imaging frequency
f im=92 kHz between foPB

and f0PS
. The investigated zone

�20	20 �m2� is representative of the material structure at
the micrometer scale.

FIG. 2. Typical cantilever’s resonance spectra in contact with PS and PB. A
Lorentzian fit allows the estimation of the C* constant relative to the equiva-
lent linear oscillator model for the cantilever.

FIG. 3. �a� Experimental and theoretical points �a�f� ,b�f�� describing a
circle. Far from resonance, the points tend toward the never reached point
�0,0�. Near resonance, �a�f� ,b�f�� is always diametrically opposed to �0,0�.
�b� Experimental points are correctly fitted by the theoretical circle after a
rotation from an angle �=200°. Such a correction is necessary to take into
account the electronics’ transfer function of the system.
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According to relations �6� and �7�, processing of both the
real and imaginary part images was performed. Images of
resonance frequency f0 and half-width at half-height f1 were
produced. The contrast of the images was related to the
sample frequency-dependent viscoelastic behavior at the im-
aging frequency f im. Indeed, resonance frequency depends
on contact stiffness, whereas half-width at half-height de-
pends, partially, on the material damping.

In Fig. 5�a�, the dark zones correspond to the more com-

pliant material while the lighter zones correspond to the
stiffer. In Fig. 5�b�, the dark zones correspond to the less
dissipative material while the lighter zones correspond to the
most dissipative.

V. ON THE QUANTIFICATION OF THE VISCOELASTIC
MODULUS

We will now discuss the quantification of mechanical
properties. The produced images were used to estimate a
reduced complex viscoelastic modulus, expressed as
E�*�f im�+ jE�*�f im�. The in-phase component E�*�f im� was
called the storage modulus. The out-of-phase component
E��f im� was called the loss modulus. The quantification of
these moduli was made possible by applying contact me-
chanics theories.14,15,18–20 We underline the fact that, because
technical data on beam and tip sizes are not reliable enough,
uncertainty will always be substantial.

Let us consider the case of a vibrating tip-sample con-
tact. It what follows, we were inspired by the method pro-
posed by Mahaffy et al.21 The relation between the tip pen-
etration and the applied load in a static regime was given by

F =
4

3
E*R1/2�3/2. �9�

We then considered a small variation of the tip penetration
d� around a mean �static� value �0, as shown in Fig. 6. The
tip is supposed to be infinitely stiff with respect to the
sample. The first order series approximation for expression
�9� around �0 gave

F �
4

3
R1/2�E0

*�0
3/2 +

3

2
Ed

*�0
1/2d�	 = F0 + dFd, �10�

where E0
* is the static-reduced elastic modulus of the sample.

Ed
*=E�*+ jE�* is the dynamical viscoelastic modulus of the

sample at the imaging frequency f im. dFd is the force varia-
tion induced by d�. In Fig. 6, this variation is presented in
comparison with the variation dF0 which would have been
induced if the dynamical properties of the sample had been
the same as the static ones. In the case of polymers, the static
behavior interferes with the dynamical behavior. For most
polymers, E�*
E0

*, thus we have dFd
dF0.
The selection of a viscous damping model in Eq. �1� was

primarily used for ease of analysis. However, the behavior of
a viscoelastic material is better described through the use of

FIG. 4. Images of real part a and imaginary part b of the cantilever’s
vibration at frequency f im=92 kHz.

FIG. 5. Resonance frequency and half-width at half-height images obtained
by processing of the real and imaginary part images.

FIG. 6. The contact modulation seen as a small variation of indentation d�
around a mean value �0. The contact force, represented according to Hertz
theory, is the sum of static component Fs and a dynamical component dFd.
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the hysteretic model22 in which damping is represented by a
complex stiffness kN� + jkN� . We can deduce from expression
�10� that the normal contact stiffness in the case of a Hert-
zian contact without adhesion can be expressed as

kNHertz
� + jkNHertz

� =
dFd

d�
= 2R1/2�0

1/2Ed
*. �11�

Introducing the first term of Eq. �10� into Eq. �12�, we
obtained

kNHertz
� = E�*�6RF0

E0
* 	1/3

, �12�

and

kNHertz
� = E�*�6RF0

E0
* 	1/3

. �13�

To take into account the contact in presence of adhesion, we
used the DMT15 model. This model is just an offset of the
Hertz model by the adhesive force Fad. Then, we deduced

kNDMT
� = E�*
6R�F0 + Fad�

E0
* �1/3

, �14�

and

kNDMT
� = E�*
6R�F0 + Fad�

E0
* �1/3

. �15�

The resonance conditions verified the modified form of rela-
tion �5�, where f0 and f1, respectively, the contact resonance
frequency and half-width at half-height, were given by

f0 =
1

2�
�kNDMT

� + kl

meff
, �16�

and

f1 =
kNDMT
�

8�2mefff0
. �17�

We next tried to quantify the viscoelastic properties of the
HIPS sample. Experiments were conducted with the follow-
ing parameters, which were inserted into our numerical cal-
culations: R�50 nm, F0�0 nN, and Fad�10 nN. Fad was
obtained by measuring the pull-off force and was approxi-
mately the same on PS and PB. The static moduli of PS and
PB were those measured by Tsukruk and Huang:23 E0�PS�
=3 GPa, �0�PS�=0.33 and E0�PB��0.003 GPa, �0�PB�
�0.5. The corresponding reduced moduli were E0

*�PS�
�3.4 GPa and E0

*�PB�=4 MPa. We measured the average
values for f0 and f1 �Table I�. Knowing the free resonance
frequency f =19.3 kHz, kl=0.12 N/m and considering that

the contact stiffness is equal to zero, it was possible to de-
duce the effective mass meff using relation �16�: meff�8.2
	10−12 kg. Using Eqs. �16� and �17�, we estimated kNDMT

�
and kNDMT

� for PS and PB at the imaging frequency �Table I�.
Finally, using �14� and �15� we obtained the values of E�*

and E�* in the vicinity of the imaging frequency �92 kHz�
�Table I�. The result for PS seemed to be underestimated,
while the value for PB was more coherent. Indeed, at the
imaging frequency PB probably reached the glassy behavior.
PS was expected to remain on the glassy plateau with a stor-
age modulus comparable to the static one. The calculated
modulus was, however, approximately ten times smaller than
the expected value. If we try to explain this underestimation
by evaluating all uncertainties ��R /R�0.5, �F /F�0.1,
�kl /kl�0.5, etc.�, we find systematic errors �kN /kN�0.5
and �E* /E*�1. These very important errors are not suffi-
cient to explain the difference between the actual value and
the expected one. A possible explanation is that the cantile-
ver used for this experiment was not well adapted for testing
stiffness in the range of PS or above. As mentioned by Rabe
et al.,24 cantilever stiffness must verify kN /kl
10 to be suf-
ficiently sensitive to mechanical properties. Moreover, the
spring-mass model predicts the true frequency response of
the cantilever only in this condition. This condition was not
respected in the present study of PS and the spring-mass
model was no longer adequate. For this reason, we remain
careful about announcing a quantitative elastic modulus.25

VI. DISCUSSION

In this article we presented a new method to separate the
elastic and damping information of a viscoelastic sample by
resonance frequency mapping in atomic force modulation
microscopy. This method is based on the measurement of the
real and imaginary parts of the cantilever’s vibration at a
single frequency. Numerical image processing allowed us to
produce resonance frequency and resonance curve width im-
ages on a high-impact polystyrene sample. We demonstrated
that these experimental data are theoretically related to the
sample’s storage modulus and loss modulus, respectively.
The quantification of images in terms of viscoelastic moduli
is thus possible but is still dependent on the reliability of the
sensor’s technical characteristics.
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