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Cdc48 (p97), a conserved chaperone-like ATPase of
eukaryotic cells, has attracted attention recently
because of its wide range of cellular functions. Cdc48
is intimately linked to the ubiquitin pathway because its
primary action is to segregate ubiquitinated substrates
from unmodified partners. This ‘segregase’ activity is
crucial for certain proteasomal degradation pathways
and for some nonproteolytic functions of ubiquitin.
Cdc48 associates not only with different ‘substrate-
recruiting cofactors’ but also with distinct ‘substrate-
processing cofactors’. The latter proteins control the
degree of ubiquitination of bound substrates by shifting
the polyubiquitination reaction into ‘forward’, ‘neutral’
or ‘reverse’. We discuss how Cdc48 might use this ‘gear-
box activity’ to control protein fate and propose a similar
mode of action for the 19S cap of the proteasome.

Introduction
The conserved homohexameric ring-shaped AAA (ATPase
associated with various activities) ATPase, called Cdc48 in
budding yeast and p97 (the unfavorable name VCP, for
valosin-containing protein was given after an artefact) in
mammals, is a central component of the ubiquitin system.
As the yeast name indicates, Cdc48 was initially identified
as a protein required for progression through the cell divi-
sion cycle. Studies in yeast also provided the first link
between Cdc48 and the ubiquitin pathway, with the finding
that the enzyme is required for the degradation of some
artificial model substrates (linear ubiquitin–protein
fusions) [1]. Later work showed that Cdc48 (p97) is involved
in ubiquitin-dependent activation of certain transcription
factors [2–4], the degradation of proteins of the endoplasmic
reticulum (ER) by the ER-associated degradation (ERAD)
pathway [5–9], and the control of membrane fusion [10–14].
Whether Cdc48 (p97) also functions outside the ubiquitin
system is unknown but seems unlikely. Most if not all of the
known Cdc48 (p97)-dependent functions seem to be directly
linked to the ability of the protein to bind to (oligo)ubiqui-
tinated proteins and to segregate them from their binding
partners, or to extract them from protein complexes [3,15].
This ‘segregase’ function is mediated by the Cdc48 (p97)
ATPase activity, which translates ATP hydrolysis into
mechanical forces thatmoveandpartially rotate the outside
rim of the ring-shaped enzyme [16]. Cdc48 (p97) possesses
two consecutive AAA ATPase domains (called D1 and D2)
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and an N-terminal domain (N-domain). How Cdc48 (p97)
associates with substrates is an area of active research, and
two possible mechanisms have been found. First, it might
bind toubiquitinated substratesdirectly by itsN-domain, as
indicated by in vitro binding studies [3,17]. Second, it might
bind to ubiquitinated substrates indirectly through cofac-
tors [3,15,18–20]. Indeed, the second mechanism might be
more common, because numerous putative Cdc48 (p97)
‘substrate-recruiting cofactors’ have been identified
recently, which possess ubiquitin-binding domains and
usually interact with Cdc48 (p97) by its N-domain (Box 1
and Table 1).

Remarkably, Cdc48 (p97) functions not only as a
segregase; recent findings indicate that it also controls
the degree of ubiquitination of the bound substrates
[18,21]. This activity is brought about by so-called ‘sub-
strate-processing cofactors’ of Cdc48 (p97) that either
promote polyubiquitination, inhibit polyubiquitination or
even deubiquitinate the bound (oligo)ubiquitinated sub-
strate [13,18,21–24] (Box 1 and Table 1).

The diverse functions, structure and mechanistic
details of the Cdc48 (p97) enzyme have been excellently
reviewed previously [25–27]. Instead, here we discuss
when and how Cdc48 (p97) is employed in ubiquitin-
dependent pathways. Also, for reasons of simplicity, we
will focus mainly on the yeast proteins and processes
involved, although the principles discussed apply equally
to the metazoan p97 protein (unless otherwise indicated).
Specifically, we propose that Cdc48 (p97) might function
similarly to a gearbox in a car and might control protein
fate. We will speculate about the potential usefulness of
such a ‘gearbox’ activity within the ubiquitin pathway and
argue that it might be crucial for shifting the system from
nonproteolytic to proteolytic functions of the ubiquitin
system. Finally, we speculate that the 19S cap of the
proteasome might have a similar mode of action.

Diverse functions reveal a common principle
Most of our current knowledge of the function of Cdc48 (p97)
and its cofactors derives from studies of three different
cellular pathways: the OLE pathway (see later), ERAD
and the pathway for membrane fusion. Notably, several
of the components involved in these pathways have been
initially identified by genetic and biochemical dissection of
the so-called UFD pathway (‘ubiquitin-fusion degradation’)
thatmediates thedegradationof short-livedsynthetic linear
ubiquitin-fusion proteins [1,23,28]. Among these ‘UFD pro-
teins’ are Cdc48 itself, the substrate-recruiting cofactors
d. doi:10.1016/j.tibs.2006.11.005
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Box 1. Cofactors of Cdc48 (p97)

Cofactors of Cdc48 (p97) can be grouped into two classes (see Table

1 in main text).

Substrate-recruiting cofactors

The most prevalent substrate-recruiting cofactors are apparently the

heterodimeric Ufd1–Npl4 and the protein Shp1 (p47). Substrate-

recruiting cofactors possess specific ubiquitin-binding domains, for

example an N-domain in Ufd1, which, interestingly, resembles the N-

domain of Cdc48 (p97) [51], or a UBA (ubiquitin-associated) domain in

Shp1 (p47). Ufd1–Npl4 and Shp1 (p47) form mutually exclusive

complexes with Cdc48 (p97) [11,15]. Shp1 (also called Ubx1) is the

founding member of the so-called Ubx proteins [52]. These proteins

(including the human stress-activated kinase substrate SAKS [53]) are

characterized by the presence of a so-called UBX domain, which has a

three-dimensional structure similar to ubiquitin although it lacks

discernible sequence similarity. Some Ubx proteins bind to ubiquitin–

protein conjugates by special domains (often UBAs). Substrate-

recruiting cofactors typically associate with Cdc48 (p97) by the N-

domain of the AAA ATPase (see Figure 1 in main text). Not all

substrate-recruiting cofactors associate with Cdc48 (p97) in a

mutually exclusive manner; for example, Cdc48 can bind to Ufd1–

Npl4 and Ubx2 simultaneously [35].

Substrate-processing cofactors

Some substrate-processing cofactors directly influence the degree of

ubiquitination of the bound substrate, whereas others modify the

bound substrates in another way. Ufd2, a U-box-containing poly-

ubiquitination enzyme, adds further ubiquitin molecules to a Cdc48-

bound mono- (oligo-)ubiquitinated substrate [23]. Interestingly, Ufd2

seems to switch the type of ubiquitin–ubiquitin linkage of the

polyubiquitin chain from Lys29 to Lys48, perhaps to make

the ubiquitination reaction processive [23,54]. Ufd2 does not bind to

the N-domain but to the second AAA domain (D2) of Cdc48 [18,21],

thereby enabling the formation of a Cdc48 complex that contains both

Ufd1–Npl4 and Ufd2. Ufd3 (also known as Doa1), a WD-40 repeat-

containing protein that associates with ubiquitin through a PFU (PLAA

family ubiquitin-binding) domain, binds to the same D2 region and

thereby blocks Ufd2-catalyzed polyubiquitination [21,55]. Ubiquitina-

tion of bound substrates is further antagonized by the deubiquitina-

tion enzymes (DUBs) of the OTU (ovarian tumor) family [12,13,21].

Notably, these proteins (Otu1 in yeast and VCIP135 in vertebrates)

bind by their UBX or UBX-related UBD domains to the N-domain of

Cdc48 (p97) [56] without preventing a simultaneous association of

Cdc48 (p97) with the substrate-recruiting cofactors p47 (in the case of

VCIP135) and Ufd1–Npl4 or Shp1 (in the case of Otu1), respectively.

This arrangement also enables cooperation between Otu1 and Ufd3 in

antagonizing substrate ubiquitination. Ataxin-3 (which is subject to

polyglutamine expansion) is another deubiquitination enzyme and

cofactor of p97 [24,57,58]. Two other Cdc48 (p97) substrate-proces-

sing cofactors do not alter the ubiquitination state of the bound

substrates: peptide N-glycanase (PNGase) removes oligosaccharides

from ERAD substrates before proteasomal degradation [59]; HDAC6, a

deacetylase related to histone deacetylases, associates with ubiqui-

tin–protein conjugates strongly and might thus also be a negative

regulator of degradation [60].
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Ufd1 andNpl4, and the substrate-processing cofactorsUfd2
and Ufd3 (Table 1). In the following we briefly review these
pathways, mainly to compare them, and also to point out
their common features.

The OLE pathway

The OLE pathway controls the synthesis of unsaturated
fatty acids in yeast [4]. The key enzyme of this pathway is
the D9-fatty acid desaturase Ole1, an integral membrane-
bound protein of the ER. Ole1 provides yeast cells with
unsaturated fatty acids, which are crucial for membrane
fluidity and essential for viability. Transcription ofOLE1 is
www.sciencedirect.com
driven by Spt23 (and its homolog Mga2), a distant relative
of the mammalian transcription factor NFkB (p50) [4,29].
Spt23 is synthesized as an inactive precursor (called p120),
which is anchored to the ER by a single transmembrane
span [4]. When there is a shortage of unsaturated fatty
acids, Spt23 p120 homodimerizes, and one molecule of the
dimer (possibly by a stochastic mechanism) becomesmono-
(or oligo-)ubiquitinated [3,4]. This mono- (or oligo-)ubiqui-
tinated p120 molecule is then processed by the proteasome
to remove the transmembrane domain. Importantly, theN-
terminal domain of Spt23 that is spared from degradation
(the active transcription factor termed Spt23 p90) will
remain bound to its unmodified p120 partner molecule
until the complex is disassembled byCdc48. This segregase
reaction requires ATP and Cdc48 together with its hetero-
dimeric substrate-recruiting cofactor Ufd1–Npl4 (i.e. the
complex Cdc48–Ufd1–Npl4) [3]. Once mobilized away from
theER, Spt23 p90 can enter the nucleus and activateOLE1
transcription. In the nucleus, p90 is degraded, most prob-
ably after it has initiated OLE1 transcription. Interest-
ingly, p90 degradation again involves Cdc48, plus the
proteins Ufd2 and Rad23 [18]. Ufd2 is a substrate-proces-
sing cofactor that possesses E4 polyubiquitination activity –
an activity that adds further ubiquitin moieties to a mono-
(or oligo-)ubiquitinated substrate – in conjunction with an
E3ubiquitin ligase [18,23].Ufd2 not only binds toCdc48 but
also to Rad23, an escort factor that guides substrates to the
proteasome. Studies with UFD substrates indicate that the
polyubiquitinated substrate is handed over directly from
Cdc48-bound Ufd2 to Rad23 [18,30]. Importantly, Ufd2 is
antagonized by two other proteins, Ufd3 (also known as
Doa1) and Otu1 [21]. Whereas Ufd3 has no known activity
other than its ability to displace Ufd2 from Cdc48 and
thereby prevent polyubiquitination, Otu1 is a deubiquitina-
tion enzyme (DUB) of the OTU (ovarian tumor) family that
deubiquitinates Cdc48-bound substrates. In this context it
is noteworthy to mention that Cdc48 influences substrate
ubiquitination in another way: it restricts Ufd2 (E4)-cata-
lyzed polyubiquitination of bound substrates to yield short
polyubiquitin chains (4–6 ubiquitin moieties) that are opti-
mal for Rad23 recognition (a process termed ‘size restric-
tion’) and thus proteasomal degradation [18].

Although this obviously complicated pathway has sev-
eral intriguing aspects, the key conclusion relevant to our
discussion is that Cdc48 functions as a ‘gearbox’ (see later).
In the cytosol, Cdc48 acts on mono- (or oligo-)ubiquitinated
Spt23 p90 to activate the transcription factor (i.e. to mobi-
lize p90 from the ER). By contrast, later on in the pathway
(apparently in the nucleus), Cdc48 in conjunction with its
cofactor Ufd2 acts on the same substrate with the opposite
outcome: p90 is inactivated by proteasomal degradation.

Endoplasmic reticulum-associated degradation (ERAD)

pathway

ERAD is a ubiquitin-proteasome-dependent degradation
pathway that is defined mainly by the initial ER localiza-
tion of its protein substrates [31,32]. ERAD acts on
abnormal (e.g. misfolded or misassembled) ER luminal
and membrane proteins, and on normal proteins of the
ER for regulatory purposes. To reach the cytosolic
ubiquitin-proteasome system (which is absent from the



Table 1. Cofactors of Cdc48 (p97)

Protein Functions Organisms Ubiquitin-

binding

domains

Cdc48 (p97)

interaction

domains

Interaction

domains

in Cdc48 (p97)

Extra domains

Substrate-recruiting cofactors

Ufd1–Npl4 ERAD, UFD pathway,

OLE pathway

Yeast, metazoans N-terminal

UT3 domain

Ufd1: BS1;

Npl4: UBD

(UBX related)

N-domain Mammalian NPl4: NZF zinc finger

Shp1 (p47) ER membrane fusion,

Golgi assembly

Yeast, metazoans UBA UBX, BS1 N-domain

Ubx2 ERAD Yeast, metazoans UBA UBX N-domain

Ubx3-7b Unknown Yeast UBX5: UBA UBX N-domain

FAF1b Unknown Mammalian Unknown UBX N-domain? UAS (function unknown)

Substrate-processing cofactors

Ufd2 E4 polyubiquitination

enzyme; UFD and OLE

pathways, ERAD

Yeast, metazoans

(mammalian E4B)

Unknown Unknown D2 AAA

domain

U-box, RING finger-related

ubiquitin-ligase domain

Ufd3 (Doa1) Competitor of Ufd2;

UFD and OLE pathways

Yeast, metazoans

(mammalian PLAP)

PFU PUL D2 AAA

domain

WD-40

Otu1 Deubiquitinating enzyme;

OLE pathway

Yeast Unknown UBD (UBX

related)

N-domain OTU, deubiquitinating enzyme

domain

VCIP135 Deubiquitinating enzyme;

Golgi complex

Mammalian Unknown UBX N-domain OTU, deubiquitinating enzyme

domain

Ataxin-3 Deubiquitinating enzyme;

ERAD

Mammalian UIM After polyQ

stretch

N-domain Josephin domain,

deubiquitinating enzyme domain

PNGase Deglycosylation enzyme;

ERAD

Mammalian Unknown PUB D2 AAA

domain

TGc (transglutaminase domain)

HDAC6 Protein deacetylase;

aggresome formation?

Mammalian ZnF-UBP Unknown Unknown HDAC-like deacetylase domain

aAbbreviations: BS1, binding site 1; FAF1, Fas-associated factor 1; NZF, Npl4 zinc finger; PFU, PLAA family ubiquitin-binding domain; PLAP (or PLAA), phospholipase

A2-associated protein; PUB, PNGase UBA/UBX-containing domain; PUL, PLAA Ufd3 Lub1 domain; UAS, unknown domain found in FAF1 proteins; UBA, ubiquitin-associated

domain; UBD, ubiquitin fold domain; UBX, ubiquitin regulatory X domain; UIM, ubiquitin-interaction motif; ZnF-UBP, ubiquitin C-terminal hydrolase-like zinc finger.
bSubstrate-recruiting cofactor function not confirmed.
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ER lumen), luminal and ER-membrane-bound substrates
must be retrotranslocated to the cytosol or extracted from
the ER membrane. Genetic studies showed that Cdc48–
Ufd1–Npl4 is required for most ERAD substrates [5,7–9].
Although the precise function of Cdc48 in this context is
not perfectly clear, the available data suggest that Cdc48
(together with the proteasome) contributes to the retro-
translocation or extraction process, or that it segregates
the substrate from the proposed retrotranslocation chan-
nel [5–9,33]. ERAD also sometimes involves the polyubi-
quitination factor Ufd2 (E4) and apparently always the
escort factor Rad23 or its homolog Dsk2 [18,34]. Notably,
Cdc48–Ufd1–Npl4 is recruited to the ER through asso-
ciation with Ubx2, an ERAD-specific cofactor that pos-
sesses two transmembrane segments [19,20,35]. Ubx2
binds not only to ubiquitinated substrates on the cytosolic
face of the membrane, but also to dedicated E3 ubiquitin
ligases [35,36]. Although the precise order of events is not
clear, a plausible model is that ERAD substrates when
they emerge at the cytosolic face of the membrane are
first ubiquitinated (which might prevent them from slip-
ping back into the lumen [37]) and subsequently recog-
nized by Cdc48–Ufd1–Npl4 for extraction. Analogous to
the processes in the OLE and UFD pathways, proteaso-
mal targeting might then additionally involve Ufd2 and
Rad23 (or Dsk2).

Membrane fusion pathway

Homotypic membrane fusion in yeast, and the fusion of
Golgi vesicles after mitosis in mammalian cells, also
depends on Cdc48 (p97) [10–14]. For this function,
Cdc48 (p97) associates with the substrate-recruiting
www.sciencedirect.com
cofactor called Shp1 in yeast (Cdc48–Shp1) or p47 in
vertebrates (p97–p47), which similarly to the alternative
Ufd1–Npl4 heterodimer possesses ubiquitin-conjugate-
binding activity, which is important for this process.
Remarkably, membrane fusion in mammals also requires
a substrate-processing cofactor termed VCIP135, a deubi-
quitination enzyme of the OTU family and distant relative
of yeast Otu1 [12–14]. However, whether deubiquitination
serves to protect a substrate from degradation or has other
functions is currently not clear, and this can only be
addressed once the substrate has been identified.

A ‘gearbox’ could shift fates
With the discovery of substrate-processing cofactors it
became clear that Cdc48 (p97) is more gifted than pre-
viously expected and that it functions not only as a cha-
perone-related segregase. In particular the finding that
three types of cofactors can differentially influence the
degree of ubiquitination of Cdc48-bound substrates [21]
led us to the speculative model that Cdc48 (p97) could also
function as a ‘gearbox’ with three positions: ‘forward’, for
further polyubiquitination (Ufd2-catalyzed); ‘neutral’, for
prevention of ubiquitination (Ufd3-blocked); and ‘reverse’,
for deubiquitination (Otu1-catalyzed; this reverse state
might be made even more potent through a combination
of the Ufd3 and Otu1 activities) (Figure 1a). If correct, the
question is what might be the raison d’être for this activity.
A clue to this question comes from the OLE and possibly
also theGolgi pathway. As noted, Cdc48 can act on Spt23 in
at least two ways with a completely different net result.
When in ‘neutral’ (i.e. in the absence of Ufd2 activity)
Cdc48 mobilizes Spt23 p90 from the membrane, turning



Figure 1. Putative molecular gearboxes. (a) Speculative model of a gearbox function of Cdc48 (p97). Mono- or oligo-ubiquitinated substrates (brown; ubiquitin, red) are

recruited to the Cdc48 (p97) gearbox (gray). In the position ‘forward’ (F) the E4 enzyme Ufd2 polyubiquitinates the substrate, thereby promoting proteasomal degradation.

In ‘neutral’ (N), the WD-40 protein Ufd3 competes with Ufd2 for Cdc48 binding, thereby preventing further ubiquitination of the substrate by Ufd2. In the position ‘reverse’

(R), the deubiquitination enzyme Otu1 removes the ubiquitin modification of the substrate. Substrates released from Cdc48 through the ‘N’ and ‘R’ positions of the gearbox

are either mono- (oligo-)ubiquitinated or unmodified and thus metabolically stable. (b) Comparison between Cdc48 (p97) and the 19S cap of the proteasome. Cdc48 (p97)

(left) is a homohexameric ring (gray). Each subunit possesses an N-domain and two consecutive AAA ATPase domains, D1 and D2. The substrate-recruiting cofactor Ufd1–

Npl4 and the deubiquitination enzyme Otu1 bind to the N-domain; the polyubiquitination enzyme Ufd2 binds to the D2 domain. The Rpt1–6 ATPase of the 19S cap (right; the

19S cap can bind to only one or both ends of the 20S proteasome) is a heterohexamer (gray and dark gray). Rpn1 and Rpn2 are putative substrate-recruiting cofactors (at

least through interaction by Rad23). Ubp6, a deubiquitination enzyme, and Hul5, a ubiquitin ligase, associate with the 19S cap. Because of the opposing activities of

ubiquitination and deubiquitination enzymes, both Cdc48 (p97) and 19S cap can function as gearboxes, shifting the activities of the particles from a proteolytic to a

nonproteolytic (chaperone-like) function.
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the protein into an active transcription factor. By contrast,
when the Cdc48 gearbox is shifted to ‘forward’ (i.e. in the
presence of Ufd2 and the absence of Ufd3 and Otu1) Spt23
p90 becomes polyubiquitinated, is handed over to Rad23,
and escorted to the proteasome for destruction. In theGolgi
pathway, the Cdc48 gearbox might be shifted in the other
direction, namely from ‘neutral’ to ‘reverse’, because the
DUBVCIP135 is also required to formGolgi cisternae [14].
Because only polyubiquitinated substrates are usually
degraded by the proteasome, Cdc48 (p97) through shifting
the degree of ubiquitination might therefore decisively
regulate the fate of the substrate. The handiness of this
proposed activity is particularly evident for proteins that
perform different cellular functions depending on whether
they are unmodified, mono- (or oligo-)ubiquitinated, or
polyubiquitinated. In addition to transcription factors
(and the unknown substrate of the Golgi or membrane
fusion pathway), candidate substrates could include other
regulatory proteins such as proteins involved in DNA
transactions (repair, recombination, replication) or chro-
matin function.

Is the 19S cap of the proteasome also a gearbox?
Although not suggested by sequence comparison or domain
organization, Cdc48 (p97) has striking functional similar-
ity to the AAA ATPases of the 19S cap of the proteasome
[38]. This complex recruits polyubiquitinated proteins to
the proteasome, which leads to their unfolding and the
threading of their polypeptide chain through the narrow
openings of the 20S proteasome into its proteolytic
chamber. In contrast to the homohexameric Cdc48 (p97)
www.sciencedirect.com
enzyme, six different subunits (Rpt1–6) form a heterohexa-
meric ring, which sits on top of the openings of the 20S
proteasome (one on each side of the proteasome)
(Figure 1b). Similarly to Cdc48, at least some of the Rpt
proteins can bind to ubiquitin-conjugates directly [39].
However, ubiquitin-conjugate binding seems to be
mediated by cofactors, namely Rpn1, its close homolog
Rpn2, and Rpn10 [40–42]. This is analogous to the
Cdc48 (p97) system and these proteins can be considered
as substrate-recruiting cofactors of the Rpt ring. Because
Rpn1 and Rpn2 recruit the escort factor Rad23
(loaded with ubiquitin–protein conjugates) by the single
ubiquitin-like domain of Rad23, it seems possible that they
could also bind to mono- or oligo-ubiquitinated proteins
directly (although this has not yet been demonstrated
experimentally).

Intriguingly, substrate-processing cofactors of the 19S
cap seem to exist as well. Several ubiquitin ligases have
been reported to function as proteasome cofactors (e.g.
Ubr1, Ufd4 and Hul5) [43,44], and some of these might
function similarly to Ufd2 in polyubiquitination of pro-
teasome-bound ubiquitinated substrates. Furthermore,
the 19S cap directly associates with the DUB protein
Ubp6 (USP14 in vertebrates) for which the ubiquitin-like
domain of Ubp6 is essential [44,45]. Interestingly, Ubp6
has the activity to remove ubiquitin moieties from the
distal end of a chain [46], thereby trimming chains down
to perhaps a single moiety, or it might remove ubiquitin
from the substrate completely. Again, by analogy to the
Cdc48 (p97) complex, Ubp6 might fulfill a similar func-
tion as Otu1 or VCIP135 in deubiquitinating proteasome-
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bound substrates. At a first glance, an activity at the
proteasome that blocks or even cancels out previous
cellular decisions that have ordered proteins for degra-
dation seems odd. However, it is important to note that
the proteasome, in particular the 19S cap, has been
functionally linked to several nonproteolytic functions
as well. Examples are the suggested nonproteolytic, per-
haps chaperone-related, role of the proteasome in nucleo-
tide excision repair (NER) [47] and transcriptional
control [48]. Interestingly, it seems that in these cases
the substrates might also be degraded at a later point,
possibly to make room for other proteins that function in
the same pathway. We speculate that the 19S cap of the
proteasome could also function as a gearbox by shifting
the activity of the proteasome from a chaperone-related
activity to a protease.

Open questions
Regarding the gearbox model, the key open question is:
what shifts the lever? One obvious possibility is the avail-
ability of specific substrate-processing cofactors. Another
option is that cofactor association is controlled by modifica-
tion of Cdc48 (p97), the cofactors or the substrate. Indeed,
Cdc48 (p97) is phosphorylated on tyrosine and serine
residues upon various signals [49,50], but whether phos-
phorylation might influence cofactor association has not
yet been experimentally addressed. Thinking of the Hsp70
chaperone system, which is crucially regulated by factors
that control the ATPase cycle, one could speculate that
some cofactors might control Cdc48 (p97) in an analogous
way. Unfortunately, such biochemical studies are cur-
rently lacking, and it will be interesting to see whether
novel types of cofactors exist that directly extend the time
period of Cdc48–substrate association or facilitate
substrate release. If they exist, it is plausible that they
will also influence the way Cdc48 (p97) interacts with
particular substrate-processing cofactors. Given the accel-
erated interest in this intriguing molecular machine and
the pace of new discoveries, it seems likely that the Cdc48
(p97) system will continue to keep the ubiquitin field in
motion.
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